
www.manaraa.com

i

FROM LIVED EXPERIENCES TO GAME CREATION:
HOW SCAFFOLDING SUPPORTS ELEMENTARY SCHOOL STUDENTS LEARNING COMPUTER SCIENCE

PRINCIPLES IN AN AFTER SCHOOL SETTING

by

IAN HER MANY HORSES

B.S., University of Colorado Boulder, 2006

A dissertation submitted to the

 Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirement for the degree of

Doctor of Philosophy

School of Education

2016

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10108772

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10108772

www.manaraa.com

ii

This dissertation entitled:
From Lived Experiences to Game Creation: How Scaffolding Supports Elementary School Students

Learning Computer Science Principles in an After School Setting
written by Ian Her Many Horses

has been approved for the School of Education, University of Colorado Boulder

Dr. Valerie Otero, Chair

Dr. Kris Gutiérrez

Dr. William Penuel

Dr. Alexander Repenning

Dr. David Webb

Date 4/12/2016

The final copy of this thesis has been examined by the signatories, and we
Find that both the content and the form meet acceptable presentation standards

Of scholarly work in the above mentioned discipline.

IRB protocol # 0610.13

www.manaraa.com

iii

Her Many Horses, Ian (Ph.D., Education [Curriculum & Instruction])

From Lived Experiences to Game Creation: How Scaffolding Supports Elementary School Students

Learning Computer Science Principles in an After School Setting

Dissertation directed by Professor Valerie Otero

Abstract

The world, and especially our own country, is in dire need of a larger and more diverse population of

computer scientists. While many organizations have approached this problem of too few computer

scientists in various ways, a promising, and I believe necessary, path is to expose elementary students to

authentic practices of the discipline. Through a design research study I worked toward developing an

effective method to engage elementary students (grades 3-5) in computer science (CS) through video

game creation at an after school program called El Pueblo Mágico. To carry out this goal I implemented,

and refined, two scaffolding tools over two iterations of the study to help students design and create

their own games. These scaffolding tools were meant to support students in organizing and refining

their own game ideas, while also assisting them in accessing the CS principles of design and algorithms.

The students were to then use their designs to create their games using an agent-based programming

environment. In the first iteration of the study I asked students to design their games using a pencil-and-

paper planning document and then create the games using the AgentSheets programming environment.

I found that the pencil-and-paper version of the scaffolding tool was too open for students and they

never finished their designs or accessed information that would have helped them make their games. As

a result, the students in the first study needed considerable help creating their games from me. In the

second iteration of the study I asked students to use a new web-based scaffolding tool that I developed,

called AgentDesign, to do design and then create their games using AgentCubes Online. The

AgentDesign planning tool was successful in guiding most of the students through the process of design,

www.manaraa.com

iv

and these students not only completed the design process but also accessed much of the information

that would help them to make their games. However, these students also did not completely create

their games, despite completing the design process and having most of the information they would need

at their fingertips.

www.manaraa.com

v

Dedication

For my girls. Becky, Carmen, and Sonya.

www.manaraa.com

vi

Acknowledgements

I am grateful to Dr. Valerie Otero, for taking a chance on advising a computer science education

student and supporting me in trying to make sense of just about everything. She truly modeled what it

means to be an advisor, teacher, and learner. Dr. Kris Gutiérrez, Dr. Alex Repenning, and Dr. David

Webb, gave me the encouragement, support, space, and time to try out something different. Dr. Bill

Penuel, took the time to discuss issues with me that were challenging and meaningful for the work

presented here. I am also grateful to Dr. Jim Curry and the Applied Math Department, for giving me my

first opportunity to teach, and then my first opportunity to do research, this had a dramatic impact on

the decisions I made and who I have become as a scholar. Dr. Vinnie Basile, Dr. Adam York and Henry

Suarez provided significant support and encouragement throughout this process and helped me stay

connected to the real world. Dr. Ben Van Dusen, Dr. Mike Ross, Dr. Deb Morrison, Dr. Sarah Heredia,

and everyone else in the office created an important space for sense-making, deep thought, and intense

growth.

www.manaraa.com

vii

Contents

Introduction .. 1

Literature Review .. 3

Goals of Computer Science ... 3

The Broken Pipeline of CS Education .. 13

Engagement & Learning .. 26

Scaffolding ... 28

Learning Theory .. 30

Design Research Studies ... 37

Study 1 .. 39

Conceptual Framework ... 40

The “Make Your Own Game” Activity ... 48

Study Design & Analysis .. 60

Findings ... 68

Discussion & Implications ... 76

Study 2 .. 79

Research Questions .. 80

Study Design ... 80

Conceptual Framework ... 89

The AgentDesign Planning Tool .. 98

Study Analysis ... 107

Findings ... 113

Study 2 Closing .. 128

Discussion.. 129

Transfer from Design to Programming Environment ... 129

Implications for CS and Informal Learning .. 131

Implications for the “Make Your Own Game” Activity ... 133

Implications for Programming Environments ... 135

Implications for the Design Scaffolding Tool .. 135

Preparing Computer Science Elementary Teachers .. 141

References .. 143

Appendix A .. 148

www.manaraa.com

viii

Coded Samples of Student Design Summaries ... 148

Appendix B .. 150

The AgentCubes Online Programming Environment .. 150

www.manaraa.com

ix

List of Tables

Table 1. Examples of Computational Thinking Patterns ... 11

Table 2. Study 1 Conjectures .. 40

Table 3. Practices for designing a video game using the planning document .. 53

Table 4. School demographic information .. 61

Table 5. Design practices coding scheme ... 63

Table 6. Example of coded design data with accompanying transcript excerpts 65

Table 7. Group 1 coding results .. 69

Table 8. Group 2 coding results .. 70

Table 9. Group 3 coding results .. 72

Table 10. Group 4 coding results .. 73

Table 11. Study 2 Conjectures .. 90

Table 12. AgentDesign Planning Tool Design Practices .. 99

Table 13. AgentDesign Planning Tool Sections and Design Practices ... 99

Table 14. AgentDesign Design Practices Coding Scheme ... 109

Table 15. Counting Categories for Student Design Summaries .. 110

Table 16. Sample of Raw Interaction Counting Categories of Students’ Design Summaries 111

Table 17. Student Design Practices using AgentDesign .. 114

Table 18. Correctness of all Students' Designs using AgentDesign .. 115

Table 19. Individual Counts of the Students Identification of Agents using AgentDesign 117

Table 20. Individual Counts of each Student’s Correct Identification of Interactions using AgentDesign120

Table 21. Individual Counts of the Students Correct Use of CTPs using AgentDesign 122

Table 22. Transfer of the Students’ Design to the Programming Environment 123

www.manaraa.com

x

List of Figures

Figure 1. Nature of the computer science discipline .. 3

Figure 2. Top-down design process .. 5

Figure 3. The Formative Assessment Model ... 30

Figure 4. Vygotsky's Theory of Concept Formation and the Iceberg Model .. 32

Figure 5: Pilot Study Conjecture Map ... 42

Figure 6: Pencil-and-Paper Planning Document ... 44

Figure 7. 5th Dimension Activity System .. 47

Figure 8. AgentSheets Game Board .. 49

Figure 9. AgentSheets Gallery, Depiction Editor, & Behavior Editor .. 51

Figure 10. Planning Document Pages and Work Flow .. 54

Figure 11. Project Description... 54

Figure 12. Agents .. 55

Figure 13. Game Board ... 56

Figure 14. Patterns .. 57

Figure 15. The Game activity process in relation to the planning document ... 59

Figure 16. Group 1 timeline of planning process .. 70

Figure 17. Group 2 timeline of planning process .. 71

Figure 18. Group 3 timeline of planning process .. 72

Figure 19. Group 4 timeline of planning process .. 73

Figure 20. Refined Vygotsky's Theory of Concept Formation and the Iceberg Model 76

Figure 21. Areas needing improved scaffolding for the Game activity .. 79

Figure 22. Focus of Pathway Beginner Level for Game Activity Process .. 85

Figure 23. iRemix Pathway - Beginner Level ... 86

www.manaraa.com

xi

Figure 24. Focus of Pathway Advanced Level for Game Activity Process ... 86

Figure 25. iRemix Pathway - Advanced Level ... 87

Figure 26. Focus of Pathway Expert Level for Game Activity Process .. 88

Figure 27. iRemix Pathway - Expert Level ... 89

Figure 28. Study 2 Conjecture Map .. 91

Figure 29. Disconnected Learning in Study 1 .. 93

Figure 30. AgentDesign Planning Tool - Project Description .. 100

Figure 31. AgentDesign Planning Tool - Agents .. 101

Figure 32. AgentDesign Planning Tool - Selecting Interactions Window .. 103

Figure 33. AgentDesign Planning Tool - Building Interactions Window ... 104

Figure 34. AgentDesign Planning Tool - Summary .. 106

Figure 35. Comparison of Design Practices for Studies 1 & 2 ... 113

Figure 36. Counts of Identified and Non-Identified Agents in AgentDesign Summaries for All Students 116

Figure 37. Students’ Identification of Agents using AgentDesign ... 117

Figure 38. Counts of Alignment between Interactions and Descriptions in AgentDesign Summaries 118

Figure 39. Students' Interaction Correctness using AgentDesign ... 119

Figure 40. Counts of CTP Alignment with Descriptions in AgentDesign Summaries 121

Figure 41. Students' CTP Alignment with Interactions and Descriptions using AgentDesign 122

Figure 42. Areas needing improved scaffolding after study 2 .. 130

Figure 43. AgentCubes Online programming environment .. 150

www.manaraa.com

1

Introduction

The purpose of this design research study was to develop an effective method to engage

elementary students in computer science (CS) through video game creation. This was done through an

activity where students designed, created, and tested games based on their own experiences and ideas

in an after school setting.

The project this study is based on was an activity at El Pueblo Mágico (EPM), a 5th Dimension

after school site, and was an effort to incorporate CS into elementary grade-level activities. The activity,

called the “Make Your Own Game” activity, was introduced by having students create video games.

Initially this was done through students following a tutorial to create the game Frogger, but was

transitioned to students designing and creating their own games. The games were initially created at

EPM through the use of a planning document created by Middle School teachers, that were part of the

general Scalable Game Design projecti, and modified by me, the researcher. My goal for the activity was

to help the students to be successful in creating a game they designed while being introduced to the CS

discipline.

This dissertation is divided into two parts. Part one presents the results of a pilot study, of which

I was trying to understand what elementary students were capable of when creating video games. The

research questions I proposed for the pilot study were:

1. What are the students’ behaviors when trying to create video games using an agent-based

programming environment?

2. How do the students’ behaviors align with the intended “Make Your Own Game” activity

process?

The findings from the pilot study were that the activity, particularly the document that

scaffolded the students’ designing of games, did not work as intended. This breakdown resulted in a

www.manaraa.com

2

new intervention for the activity where the document scaffolding design was transitioned to a web

application.

In the following sections, I provide a literature review that elaborates on the terms CS, design,

algorithms, and programming languages; provides an overview of CS Education; explains why I chose to

focus on elementary grade-level students for this study; and a discussion of relevant learning theory. I

then present the results of the pilot study (study 1) and follow-up study (study 2) using the intervention

of a computer-assisted planning tool called AgentDesign that I created.

www.manaraa.com

3

Literature Review

Goals of Computer Science
CS is a discipline that uses computational theories and tools to solve problems. One disciplinary

practice that computer scientists employ is to create software to address problems. The creation aspect

of problem solving in CS requires the use of design, which is a thoughtful way of approaching the

creating, testing, and releasing of software. Tools that computer scientists use to design and then create

software are programming languages and algorithms (Figure 1).

Figure 1. Nature of the computer science discipline

Programming languages and algorithms used together allow for very complex software to be

made. But simply knowing many languages and their rules, or memorizing algorithms, is not enough to

participate in CS disciplinary practices. Choices must be made by a computer scientist about what

language to use and how the program can be structured using algorithms to create an acceptable

solution. These choices are design choices.

Design
Design is a process through which things (software, buildings, cars, etc.) are created. The

process of design initially starts with an analysis of the problem that the design is trying to address. Prior

knowledge and experience are leveraged in an analysis of the problem. This analysis can reduce the

design to smaller, and easier to handle, tasks. The choices made during the identification of smaller

tasks require an understanding of how the smaller tasks can be carried out and how they will work

together in the design as a whole. For the smaller tasks, some will be able to use existing solutions and

Programming

Languages Algorithms

Design in CS

www.manaraa.com

4

others will demand that new solutions be developed. The power in being methodical about the design

process is that existing solutions can be leveraged and needed solutions will not be so complex.

There are two simple ways to approach design. One is top-down design and the other is bottom-

up design. Top-down design is what most experts use when creating software (Cross, 2004) and is

represented in Figure 2. This approach is very methodical and is meant to lead to an optimal solution by

examining the problem and decomposing it in order to establish the problem’s structure (Ho, 2001) and

then using that structure to develop solutions. Bottom-up design involves addressing design issues as

they arise in the process of creating software (Cross, 2004). This approach may lead to a similar product

being created by the designer, but is also likely to take longer to develop. These two design practices are

discussed further in the following sections.

www.manaraa.com

5

Figure 2. Top-down design process

Top-Down Design
Figure 2 represents a top-down design process. When a computer scientist is using a top-down

design process she is trying to find an optimal solution for the problem through problem scoping and

information gathering before she attempts to create it in a programming environment. This type of

approach is most closely associated with how experts solve problems (Atman et al., 2007; Cross, 2004).

The advantage of the top-down approach is that a computer scientist will have a good idea of what

needs to be done to solve the problem so she can be efficient during the creation process. Top-down

design also provides the best opportunity for the final program to be efficient in the way it runs. The

Analyze Task
Understand what needs to be carried out to complete the
task.

Identify Components of Solution
Using prior experience and knowledge, split what needs to be
done into tasks that are easier to do and design for.

Address Fit of Components
Ensure that the smaller tasks will accomplish the goal when
working together.

Design Identified Component Solutions
Plan out ways to accomplish the smaller tasks.

Known Solutions
Small design tasks may be solved using known solutions, such
as algorithms.

Develop New Solutions
Small design tasks may require the designer to be creative
and develop solutions on her/his own.

www.manaraa.com

6

disadvantage of this process is that the computer scientist will need to rely on prior knowledge to guide

the design, and if her prior knowledge is limited in this area she will need to be provided support

materials that can disaggregate her ideas into smaller and approachable tasks. The following is a

narrative for how this process may play out for a student creating a game of her own design using a top-

down approach for an agent-based programming environment.

TOP-DOWN NARRATIVE:

Analyzing the
Task

Sally wants to make a game in which her dog has to find its way home after following her
to school. She wants to be able to control her dog and it will have to go through a maze of
streets while avoiding cars and the dog catcher to get home. To begin she draws a picture
of what she wants her game to look like.

Sally analyzes the task by taking her idea and drawing it out.

Identifying
Components of

the Solution

From that picture she then identifies what objects she will need to have visual
representations for in her game. She writes the objects down as a list on a separate paper.
These include the dog, streets, school, home, houses, cars, and the dog catcher.

Sally identifies the dog, streets, home, houses, cars, and dog catcher
as components of her game.

Design
Identified

Components
&

Addressing the
Fit of the

Components

 (Cyclical)

For each of the objects on her list she draws out what they should look like. She also
describes what each object should do and when they should do it. For example, she wants
the dog to be able to move around on the street, but not on the houses, just like in a maze.
She also wants the dog to only move when she presses specific arrow keys, such as the up
arrow makes him move up if there isn’t a house blocking him. As she writes out her
descriptions, she realizes that the streets and houses will not be needed to do anything;
they are just static images that the dog decides whether or not it can move on. The cars will
move around randomly on the street and if they happen to move right next to the dog, the
dog gets hit and the game is over. She considers whether the dog or the car programming
should detect if the game is over and settles on the idea that the dog should detect if it got
hit by the car. So she then adds that to the area describing what the dog will do. The dog
catcher will need to chase the dog through the streets, but it cannot move through any car
that may be blocking its path or on the houses. If the dog catcher gets next to the dog the
game is over. Again, she chooses that the dog should detect if the dog catcher is next to it
and adds that information to the dog’s description. The only way to win the game is for the
dog to reach home without getting hit by a car or caught by the dog catcher. She also
elects to make the dog figure out if it has made it home.

For each previously identified component of her game, Sally decides
what each component should do and ensures that it fits the overall
game idea.

www.manaraa.com

7

Bottom-Up Design
In opposition to using top-down design is the bottom-up approach, and is generally associated

with novices of design (Cross, 2004). A bottom-up design process involves a computer scientist

immediately starting to build a solution in a programming environment and addressing design needs as

they come up (Rist, 1991). This allows for the computer scientist to experiment with the programming

environment and her ideas to create a solution for a piece of software. Relating the bottom-up design

process to Figure 2, a computer scientist will start by addressing the smaller tasks and then move up the

chain as needed.

If Sally had chosen this approach in creating her game she may have made different choices and

her game would have turned out differently. While this is not necessarily a negative situation, as long as

the game works the way she wants, the bottom-up approach is likely to take her longer to create a

working game. The following is a narrative of the process Sally may have used to create a game of her

own design using a bottom-up approach for an agent-based programming environment.

Using Known
Solutions

Next, Sally figures out if she knows any algorithms that will help her program the behavior
she had described earlier for each component. She knows how to detect if two things are
next to one another, so she can write the code for winning and losing. She also knows how
to program movement using the arrow keys and how to make the object only move on
certain types of ground. For her game she wants the dog to only move onto places that are
the street, and not the houses.

Using an algorithm for collision detection that Sally already knows,
she can write the code for the winning/losing situations. She also
knows how to use key input to control the dog’s movement.

Identifying
Where New

Solutions Will
Need to be
Developed

The two things she does not know how to program for her game are making the cars move
randomly on the street and making the dog catcher chase down the dog. She decides to
figure out how to do this when she gets to the point of programming the cars and dog
catcher. With these two exceptions, she starts creating her game in the programming
environment using everything she has planned out so far.

Sally does not know how to make things move around randomly or
chase, she will have to figure these out when she is that that point in
the programming.

www.manaraa.com

8

BOTTOM-UP NARRATIVE:

Analyzing the
Task

Sally wants to make a game in which her dog has to find its way home after following her
to school. She wants to be able to control her dog and it will have to go through a maze of
streets while avoiding cars and the dog catcher to get home.

Sally wants to make a game, so she takes a minute to think about
what she wants in the game.

Identifying
Components

To begin she opens up her programming environment and starts making the dog, which is
her main character. She draws a representation of it first.

She identifies the dog as a component she will need.

Using Known
Solutions

Then she programs its movement to correspond with the arrow keys.

Sally knows how to make the dog move using the keys.

Identifying
Components

Next, she makes the world that the dog is going to move around in. So she creates the road
and draws it in the programming environment. The other basic pieces of her world
environment are the houses, so she creates the houses and places them in her game playing
environment.

Sally identifies the road and houses as necessary pieces.

Addressing the
Fit of the

Components

At this point the game is starting to look like a game. The game play environment has
houses, roads, and there is one dog. Sally decides to see how everything looks when she
moves her dog around and notices that it goes everywhere, including over the houses.

Sally tests her game to see if it’s working correctly so far.

Design
Identified

Components &
Using Known

Solutions

This is not what she wanted, so she goes back and programs the dog to not be able to move
on the houses.

Sally’s game did not work correctly, she has to redesign the dog to
not walk on the houses and then reprogram it.

Identifying
Components &

Design
Identified

Components

Next, Sally makes her cars. She wants them to move around randomly on the street, but
doesn’t know how to do that.

Sally identifies that she needs cars and designs how they will move.

Developing
New Solution

Just to get started, she draws out a representation of her cars and places them in the game
play environment. Then she starts to create the programming and does testing as she
goes. At first, she makes the car move right using a 50% probability, and then move left
anytime it doesn’t move right. It takes her a while, but she eventually figures out how to
make the car randomly choose a direction to move towards while staying on the road.

Since Sally doesn’t know how to enact her design of the cars moving
randomly, she has to develop a new solution.

www.manaraa.com

9

In using a bottom-up design process, Sally needed to program and then test over time. This

process became very messy, and resulted in Sally commonly needing to go back and reprogram objects

Addressing the
Fit of the

Components

Now Sally has her dog, houses, roads, and cars. She decides to test out her game so far and
finds that the cars hitting the dog don’t end the game. She forgot to program that behavior.

Sally tests if the game is working the way she wants so far.

Design
Identified

Components &
Using Known

Solutions

To make the game end in this case, she programs the dog to end the game when it is next
to a car. She knows how to do this, so it was an easy issue to fix.

Sally designs the dog to detect a game ending situation, and since she
knows how to do collision detection, she programs it.

Identifying
Components

The next piece Sally wants to add is a dog catcher.

Sally identifies the dog catcher as an object she needs to add.

Design
Identified

Components

The game needs to end if the dog catcher gets to the dog. She wants the dog catcher to
track down the dog, so the player has to pick a path that will avoid the dog catcher.
However, she doesn’t know how to do this.

Sally decides that the dog catcher should track down the dog.

Developing
New Solution

Tracking is something Sally has seen other people do, so she looks up the programming in
other games and uses that to figure out how to make that happen in her game. It takes
some experimenting, but she finally gets it to work.

Sally has to learn how to make tracking happen in her game, since
she doesn’t already know how to do the programming.

Addressing the
Fit of the

Components

Sally tests her game again and finds that when the dog catcher gets to the dog nothing
happens.

Sally tests the game now that the dog catcher has been programmed.

Using Known
Solutions

So she programs the dog to end the game when it meets the dog catcher, just like with the
cars. She then tests it again and it works.

Sally uses code that she already knows to make the dog to detect
when the dog catcher is next to it and end the game.

Identifying
Components &

Design
Identified

Components

Finally, Sally is ready to program the winning scenario, which is when the dog gets home.
She knows how to do this so she programs the dog to check if it has reached the home,
except she realizes that she forgot to make the home.

Sally identifies that she needs to make the home and designs that
the game should end when the dog gets to the home.

Using Known
Solutions

She quickly makes the home, programs the dog, and tests to make sure it’s all working. The
programming works and the game is complete.

Sally knows how to program collision detection, so she makes the
dog end the game if it is at home.

www.manaraa.com

10

after testing. By not being deliberate about what she thought was needed for her game to work, she

missed things and had to go back and redesign components of her game. While the bottom-up design

approach allows for experimentation, it also increased the amount of work Sally needed to go through

as she learned of things she forgot to do. The resulting program from the bottom-up design process is

harder to decipher and usually patched together rather than being an easily understood organization of

thoughts and code.

This section explained two types of design, top-down and bottom-up, and gave examples of how

each type may be used to create a game. While either type of design practice may lead to the same

result, top-down design encourages a more thoughtful process and is likely to lead to a successful and

more enjoyable outcome. The goal of CS is for students to learn to be thoughtful about what they are

creating, meaning they should practice using top-down design, so that the product is created efficiently

and is effective.

Programming Languages
Within CS, programming languages provide a means through which a solution to a problem can

be expressed. They are the mediators for communicating with a computer to make it do what the

computer scientist wants.

Programming languages provide both constraints and affordances for the development of a

solution to a problem. They are almost always strictly defined, but that strictness provides a structured

environment within which a computer scientist can work. In any given situation where a problem needs

to be solved, these constraints and affordances must be accounted for to not only choose a language

that will allow for a solution to be created, but also one for which the solution will be efficient.

Algorithms
Algorithms allow computer scientists to focus on the conceptual solution to a problem instead

of the implementation of the solution (Solomon, 2007). They also provide efficient and well known

solutions to certain problems in CS. If a large problem can be analyzed and broken down in a way where

www.manaraa.com

11

there are known solutions to the smaller pieces, then algorithms become a huge help. For example,

problems that require the use of mathematical formulas, such as numerical integration, can utilize

known algorithms for those portions of the solution. Computer scientists are able to extend their

capabilities using algorithms that were developed and tested by others.

One way to introduce algorithms to novice students is to leverage the algorithmic aspects of

Computational Thinking Patterns (CTPs) (A. Basawapatna, Koh, Repenning, Webb, & Marshall, 2011).

CTPs are, “abstract programming patterns that enable agent interactions not only in games but also in

science simulations,” (p. 245). Another way to conceptualize CTPs is that they are common phenomena

that occur within games and simulations that are recognizable to users/players. The CTPs used in this

dissertation are generally limited to spatially oriented environments. An example is the collision CTP,

which occurs when two agents collide and cause something else to happen within the game or

simulations. The phenomenon of two agents colliding to cause an effect is very recognizable within

gaming, and so CTPs become useful because the underlying idea behind each pattern is generally

understood for any novice programmer. Useful CTPs include, but are not limited to, the list in Table 1,

which provides a description, visual example, and pseudocode example for each.

Table 1. Examples of Computational Thinking Patterns
Description Visual Example Pseudocode Example
Absorption:
This pattern can be
conceptualized as the meeting of
two agents that results in an
agent being erased.

1:

2:

3:

IF
the car sees a tunnel to its right

THEN

the car gets erased

Collision:
The collision pattern occurs
when two agents have a specific,
and close, spatial relationship
that results in something
happening in the game.

1:

2:

3:

IF
the car is on top of the frog

THEN

the frog dies

www.manaraa.com

12

Generation:
The generation pattern occurs
when one agent creates another
agent while the game is being
played.

1:

2:

3:

4:

IF
one second has passed

THEN
make a new truck to the right of

the tunnel

Push:
The push pattern has one agent
push another agent in a specific
direction.

1:

2:

3:

IF
the pusher wants to move right

AND
there is a box to the right

THEN

the box moves to the right
AND

the pusher moves right

Transport:
The transport pattern occurs
when one agent carries another
agent. Transporting also implies
movement, so the carrying agent
will both move and carry
whatever agents are above it in
the game.

1:

2:

3:

IF
the frog is stacked above the log

THEN

the log moves to the right
AND

the frog moves to the right

As you may have noticed in Table 1, each CTP has a set of operations to enact it within a

programming environment. In the examples shown, these operations are specific to the specific agents,

but they can also be generalized. This algorithmic nature of CTPs, along with the idea that CTPs are

recognizable phenomena, is what I intend to leverage within this dissertation to help students develop

an understanding of what algorithms are and how they can be used.

This section defined and discussed the discipline of CS and its purpose of creating solutions to

problems using computing. The three major principles that students of CS need to learn are (1) design

practices, (2) programming languages, and (3) algorithms. For each of the principles, the learners will

need to be supported in a way that their current developmental skills can be extended to a maximum

level. Vygotsky (1978) calls the difference between what a student can do on her own and what she can

www.manaraa.com

13

do with help the zone of proximal development (ZPD). Using a scaffolded tool to help the students do

design beyond telling a story can address the design principle. Requiring game creation through the use

of an accessible agent-based programming environment that makes writing instructions easy can

address the programming languages principle. By framing algorithms as CTPs, which will be

phenomenon recognizable to novices, the algorithms principle can be addressed and learned. However,

given that most novices will have had prior experience with telling stories and following/giving

instructions, but not necessarily with the idea that common phenomena in programs can be considered

algorithms, helping students learn the algorithms principle will likely be the most difficult.

The Broken Pipeline of CS Education
CS education has fallen short of recruiting and retaining students into the field, and in the case

of non-white, non-male groups it has essentially failed. Women are grossly underrepresented in the

discipline (Frenkel, 1990; Montanelli Jr & Mamrak, 1976; Pearl et al., 1990; Todd, Mardis, & Wyatt,

2005), as are minorities (Aspray & Bernat, 2000; Stockard, Klassen, & Akbari, 2004), and this

underrepresentation occurs from K-12 to working professionals (ACM Education Policy Committee,

2014; Frenkel, 1990). Within CS education, this phenomenon is often called the broken pipeline and it

occurs from people either having a lack of access to CS or choosing to stop studying CS when they do

have access.

Many projects and studies over the years have elected to address the problem of people from

underrepresented groups choosing to leave CS. Much of this work has been done at the post-secondary

level and is not simply a matter of encouraging interest. Many women tend to leave the CS pipeline due

to an environment that is not only unwelcoming to them, but can also be considered hostile (Teague,

2002). While many women have a high interest in working as professionals in CS, the male dominated

culture can easily push them away (Binkerd & Moore, 2002). Binkerd & Moore (2002) suggest that to

address the problem of pushing students out, universities and faculty must become aware of and

remedy the ways in which they interact with students, especially women.

www.manaraa.com

14

Another way that educators and researchers have worked to fix the CS pipeline problem is to

provide better access to groups that are not typically exposed to CS at the K-12 level. Many of these

access points are in the form of after school programs for students and schools that do not offer a CS

curriculum. These after school programs seek to expose students to CS in a way where they feel

successful and see a CS profession as a legitimate possibility for their future (Denner, Werner, & Ortiz,

2012; Sivilotti & Laugel, 2008). A limitation of the after school approach is that it targets a small portion

of the underrepresented groups, and the students that do participate typically self-select into the

programs. Ideally, all students would be given an opportunity to learn about CS in their K-12 classrooms

and know what their options are when it comes time to choose a career.

A recent development in CS education has been the creation and implementation of the AP

Computer Science Principles course. The purpose of this course is to promote, “deep learning of

computational content, [develop] computational thinking skills, and [engage] students in the creative

aspects of the field,” (p. 1, College Board, 2014). Unlike the previous AP CS course, the Computer

Science Principles course is not programming-centric, although it does incorporate programming into

the students’ activities. Instead, this new course focuses on helping students develop six computational

thinking practices and learning about seven big conceptual ideas of CS. These computational thinking

practices and big ideas are intended to provide students with a more authentic disciplinary experience.

In regards to the six computational thinking practices, students should develop the abilities to:

 connect computing to everyday life and understanding it’s impact on society,

 create computational artifacts with a purpose and using proper programming practices,

 identify and/or using data abstractly for modeling,

 analyze problems or artifacts to develop or evaluate solutions,

 communicate problems, solutions, and analysis using appropriate methods for a given

context,

www.manaraa.com

15

 and effectively collaborate with others to solve computational problems.

And the seven big conceptual ideas that the course focuses on are that:

 “Computing is a creative activity,” (p. 6).

 “Abstraction reduces information and detail to facilitate focus on relevant concepts,” (p. 8).

 “Data and information facilitate the creation of knowledge,” (p. 13).

 “Algorithms are used to develop and express solutions to computational problems,” (p. 16).

 “Programming enables problem solving, human expression, and creation of knowledge,” (p.

20).

 “The Internet pervades modern computing,” (p. 25).

 “Computing has global impact,” (p. 28).

In comparison to what I am trying to do with elementary students, many of my goals align with this new

AP course’s goals. However, its drawback is that many students may not have the opportunity to pursue

taking this course by the time they are in high school, or they may simply not be interested. It is

imperative that this approach be used with students at an earlier age than high school.

Some projects and organizations have pursued including CS in the general K-12 curriculum

earlier than the high school level. The Computer Science Teachers Association (CSTA) released a Model

Curriculum for K-12 Computer Science (Tucker et al., 2006) which suggested CS topics for students to

learn as well as provided grade-level breakdowns that culminated in students taking AP CS, a projects

based course, or receiving industry certification. Three notable projects and organizations have been

actionable in exposing students to CS before and during high school in regular classrooms. These

include ECSITE, Scalable Game Design, and MIT Scratch. I should note that each of these projects and

organizations approach CS exposure to students in classrooms in very different ways, which are

described below.

www.manaraa.com

16

The ECSITE project incorporates computing into a broad spectrum of courses, from art to

biology, by pairing non-CS K-12 teachers with CS graduate students to develop curriculum that meets

standards but will also benefit from a computing approach. Their findings indicate that by introducing

computer science into non-CS classrooms both teachers and K-12 students developed higher levels of

interest in CS disciplinary approaches while learning CS practices (Goldberg, Grunwald, Lewis, Feld, &

Hug, 2012).

Scalable Game Design trains middle school teachers to introduce CS into their classrooms

through creating games, and then simulations, using an agent-based programming environment. The

project also develops curriculum for the teachers to use and modify within their classrooms. Their

findings show a high participation rate of girls, due the implementation in everyday classrooms, as well

as a high rate of enjoyment for both boys and girls; with 85% of the female participants enjoying the

activity and 78% saying they would take another game making class (A. R. Basawapatna, Koh, &

Repenning, 2010; Repenning, Webb, & Ioannidou, 2010).

Scratch is a free visual programming environment and is easily accessible to novice users

(Maloney, Resnick, Rusk, Silverman, & Eastmond, 2010; Resnick et al., 2009). It is incredibly popular in K-

12 schools, and to date (June 27, 2015) there have been almost 10 million projects shared through the

Scratch website. Through its ease of use and accessibility, Scratch has opened the door to CS for many

students that would have never been given the opportunity otherwise.

As mentioned earlier, each of these groups have taken different approaches toward including CS

in K-12 education. However, a common drawback of each group is that their focus has been primarily on

classrooms at the middle school level or above and they haven’t moved much into the realm of

elementary CS education.

In earlier years of CS education research the focus was not only on helping elementary students

learn about programming structures and practices, but to also understand and facilitate their abilities to

www.manaraa.com

17

design programs (Kafai, 1996; Pea, Kurland, & Hawkins, 1985) and improve their problem solving

processes using programming (Papert, 1980).

In his book “Mindstorms,” Papert (1980) describes the LOGO programming environment and

how it can assist student learning. He emphasized the idea of teaching without a curriculum and letting

students learn a new way of thinking through programming with LOGO. History has proven that this is

not necessarily the case, as many teachers brought CS into their classrooms at the behest of his writing

and using LOGO alone did not produce the implied shifts in thinking. However, in his introduction to the

second edition of “Mindstorms,” Papert does acknowledge that he did not mean to push the idea that

programming alone could change student thinking, but that using the LOGO programming environment

could support such a shift in students. Like all new experiences for students, the activities they undergo

must be supported if any positive change is to be expected, and the shift in thinking was not supported

in this case from programming alone.

Kafai (1996) examined elementary students’ design practices while creating games using the

LogoWriter programming environment. Her research articulates that design manifests for elementary

students, given the option to create open projects, as a mix of “bricolage” and “planning.” “Bricoleurs,”

approach problems as time goes on, and they redesign their solutions as they test them (i.e. building

from the bottom-up). “Planners” approach problems from the top-down, meaning they consider the

relevant pieces of a problem and then focus on each piece to develop a solution. While a bottom-up

approach may work for completing certain design tasks, she found that it was not effective for a large

task.

Pea et al. (1985) examined elementary students’ planning abilities and the transfer of those

abilities outside of programming by examining 3rd/4th and 5th/6th grade classrooms over a two year

period. Similar to the findings of Kafai (1996), Pea et al. (1985) found that the elementary students did

not focus on planning out their programs. Instead, the students focused on the immediate needs of any

www.manaraa.com

18

task they were trying to accomplish (they used a bottom-up approach). In examining whether or not

programming improved the students’ general planning abilities compared to students that did not do

programming, Pea et al. (1985) found no improvement of student planning abilities outside of the

programming activity after one year of experience. In year two of their study, they used a different

approach to measure students’ planning abilities outside of programming that was more closely

associated with the practice of programming. However, their results were the same in that they did not

find a definitive link between programming and planning abilities of the students they worked with.

Reflecting on their results, Pea et al. (1985) believed that the teachers they had worked with did not

explicitly focus on design practices enough. They found that the teachers had only begun to do this

toward the end of their study.

Given the outcomes of the early work with elementary students doing CS, it seems apparent a

new way of thinking is not magically developed, nor are the necessary design practices used by

computer scientists. For any new student of a discipline, learning needs to be supported. Students are

able to explore and learn within programming environments, but they need to be guided in ways to

organize their thinking and ideas to develop those processes.

Unlike the work done in the 80s and 90s, CS education organizations have all but removed the

link between programming and problem solving for elementary students. The CSTA Model Curriculum

(Tucker et al., 2006) suggests that elementary students focus on skills using technology and not

necessarily on the thinking that is required in CS. Other suggestions include elementary students taking

up the CS Unpluggedii curriculum (Fletcher & Lu, 2009) in which no computers are used and students

work on conceptual CS problems (Dwyer, Hill, Carpenter, Harlow, & Franklin, 2014). Despite the current

popular beliefs around how to expose elementary students to CS, research is being done that pushes

against the idea that elementary students focus only on technological skills or CS without a computer.

www.manaraa.com

19

These studies, in which elementary students pursued programming tasks through scientific modeling

contexts or simply learning to program, are discussed below.

Louca (2005) investigated 5th grade students’ approaches to scientific modeling using two

different visual programming environments, MicroWorlds Logo and Stagecast Creator. The findings by

Louca showed that students used different approaches for the two programming environments.

Students using MicroWorlds LOGO discussed the structure of their programs while planning in relation

to the programming environment. In contrast, students using Stagecast Creator discussed the scenario

they were modeling while planning, so their focus was more on the conceptual idea. These two

approaches are very different and the findings imply that educators need to be aware of the

implications of choosing one programming environment over another and how that choice will affect

student behavior.

Sánchez-Ruíz and Jamba (2008) used a two year study to examine 4th and 5th grade students’

understanding of the computer and programming. In the first year of their study, 4th grade year for the

students, they used 1 hour, weekly sessions to teach about the workings of a computer. The students

were given presentations and worked through activities that mimicked a computer. In year two of their

study they followed the students to 5th grade and had the students learn about programming using an

environment called Squeak. After being provided presentations, the students pursued programming

tasks that involved drawing out shapes and letters. This involved the students using a “turtle” (cursor

agent) to draw within a 2D coordinate system. Most of the students were successful in completing the

activities, but were also found to dislike the “formulas, equations, and weird language,” (p. 29) that

were necessary to complete the tasks.

Sengupta and Farris (2012) helped 3rd and 4th grade students learn about kinematics through

modeling using an agent-based programming environment called ViMAP. They found that the students

www.manaraa.com

20

were not distracted by the aspect of doing programming, and that it considerably helped them to

understand a difficult concept.

What is interesting about these three studies is that examining how students used the

programming environment, or its effect on their learning, was a major focus of the findings. Since there

are many options for programming environments now, understanding which ones work well for young

students, and why, is important since the environment appears to influence student behavior (Louca,

2005). However, programming is only one part of CS. CS education can’t constantly focus on what

language or environment works well without also looking at the activities and practices that students

take up. How can students be influenced in their design practices? What approaches help students to

learn algorithms? Can young students learn to do more than just the technical aspect of CS

(programming)? CS education needs to shift towards a problem solving approach, rather than a

knowledge based approach.

Generally speaking, all 21st century citizens will be confronted with both age old problems and

new problems that have never been considered. Many solutions to these problems will be developed

using technology, which makes it imperative that students at all levels learn how to solve problems

using technology, such as CS, to do so. For students to learn how to develop solutions, they must

understand how to use design to inform their problem solving process (Fischer & Scharff, 2000; The

Computer Science Teachers Association, 2012). The Next Generation Science Standards (NGSS, 2013)

echo this call to action by including Engineering Design as a topic for which elementary students should

be able to:

 “3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified

criteria for success and constraints on materials, time, or cost.

 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well

each is likely to meet the criteria and constraints of the problem.

www.manaraa.com

21

 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are

considered to identify aspects of a model or prototype that can be improved,” (p. 32).

These three abilities that elementary students should be able to show are considered

disciplinary core ideas within NGSS. Within the grade band of 3rd through 5th grade the NGSS (2013) also

acknowledges that students should be able to enact the science and engineering practices of:

 “Asking Questions and Defining Problems

 Planning and Carrying out Investigations

 Constructing Explanations and Design solutions,” (p. 32).

Also within the Next Generation Science Standards (2013), there is guidance as to how students

in 3rd through 5th grade can make connections between disciplines through “cross-cutting concepts,”

that are present in various fields of science, engineering, and technology. These cross-cutting concepts

bridge disciplinary boundaries (Committee on Conceptual Framework for the New K-12 Science

Education Standards & National Research Council, 2011) and the cross-cutting concepts that apply to

the work presented here are:

 Patterns: Students recognize and learn to use common phenomena that occur in games and

simulations in the form of algorithms (specifically CTPs).

 Cause and Effect: Students use design to create programs that have a desired effect or outcome.

 Scale: Students use measurements and scalable values within programs to determine

functionality or program state.

 Systems and System Models: Within object-oriented programming languages and agent-based

languages, programs function as a system of components that form a whole. Additionally,

games and simulations function as a model of an observed or imagined system.

www.manaraa.com

22

 Structure and Function: Programming environments have a rigid structure from which

functionality can be built. Students must understand the structure of a programming

environment to design for and enact desired functionality within that environment.

One way that CS education has recently approached design is through the notion of

computational thinking, which can be defined as using a certain form of logical thinking to solve

problems (Lu & Fletcher, 2009; Wing, 2006, 2008). An operational definition of computational thinking

developed by the ISTE and CSTA (2011) states that it, “is a problem-solving process that includes (but is

not limited to) the following characteristics:

 Formulating problems in a way that enables us to use a computer and other tools to help solve

them

 Logically organizing and analyzing data

 Representing data through abstractions such as models and simulations

 Automating solutions through algorithmic thinking (a series of ordered steps)

 Identifying, analyzing, and implementing possible solutions with the goal of achieving the most

efficient and effective combination of steps and resources

 Generalizing and transferring this problem solving process to a wide variety of problems.”

Computational thinking has become the focus of CS education. If students are to take up this

way of approaching problems it is imperative that they learn not only about programming languages,

but also the algorithms that can make programming languages powerful. Without understanding both

programming languages and algorithms, it would not be feasible for students to truly think

computationally as it is defined above.

In regards to design, two studies have pursued understanding how young students can do

design in a CS context. One approach is for students to pursue design as a form of storytelling (Kelleher

& Pausch, 2006), and another is for students to be methodical and supported in a more traditional

www.manaraa.com

23

practice of top-down design (Robertson & Nicholson, 2007). Both of the studies discussed below focus

on young students, some of which were young enough to be in elementary school, but they were not

limited to only the elementary grade levels.

Kelleher & Pausch (2006) were interested in finding a method to attract more women to CS.

They focused on girls that were 10-16 years old and asked them to create an animated movie for the

study. Using a modified version of the Alice programing environment, called Story Alice, their activity

presented, “programming as a means to the end of storytelling.” Although their research was primarily

focused on motivating girls to find programming interesting through storytelling, they also offer

important insights on how students can be guided to do design. In the study, the girls used a scaffolded

design process by refining storyboards to develop their ideas. The researchers initially found that the

girls’ first story boards were too high-level to create appropriate programming code, and had to urge the

girls to be as detailed as possible in their descriptions. Another finding about the storyboarding process

was that if the girls had access to the programming environment before they had finished developing

their story, the girls would change their story based on a perception of what they thought would be

difficult to program. Given that the primary focus of the research was motivating the girls, restricting

access to the programming environment in order to build excitement about the end product makes

sense. However, it is also interesting to note that when the girls were aware of the programming

environment, they used that information to inform their story (design).

Robertson & Nicholson (2007) focused on young students’, ages 10 to 16, creative practices

while they designed and made 3D games in both an informal and classroom context. Their main

objective was to understand the process students go through to create games and then develop a

scaffolded, interactive software tool to assist future students in designing and making games. The data

collected included student games, design plans, and interviews discussing what the students

accomplished each day of the activity. To guide the activity, the researchers theorized that the creative

www.manaraa.com

24

process consists of six stages: exploration, idea generation, game design, game implementation, game

testing, and evaluation. Their findings show that students in both contexts enjoyed the activity and

worked very hard to complete their games. However, the classroom context, classroom and informal,

did not allow for an adequate amount of exploration for the students, resulting in students having a

limited understanding of the programming environment. Alternatively, the classroom context was

beneficial to the students because it was favorably structured for sharing ideas and letting students

learn from one another. Another finding was that students developed game ideas from three general

areas: other creative products, social influences, and exploration of the game toolkit. So it is apparent

that exploration, along with students’ prior experiences, are important aspects of the researchers’

theorized creativity process. When examining students’ generation of ideas, they found that students

had difficulty organizing and refining what they wanted to make. Game ideas also evolved or were

discarded as the students worked with the programming environment, or because they simply forgot

about them. Using the results of the research, Robertson & Nicholson outline their intended initial

design of the scaffolded software they were developing. Since exploration played a prominent role in

students’ generating ideas and understanding the programming environment, a workspace must be

available for students to play around with small aspects of programming. A separate space must also be

available for students to organize their ideas and to evaluate fit and coherence of multiple ideas. The

game design and game implementation aspects of the creative process must provide wizards to support

common and complex tasks. Students were found to have scaled back their designs from initial ideas

because they weren’t able to find a solution with their limited experience and needed support. The

design and implementation supports must be able to guide students in a way that they do not become

frustrated or disappointed with their product. To support the testing phase, students need a list of

things to check for in their game as well as support to fix buggy aspects of their programing. The final

aspect of the software is that students need a simple way of accessing and addressing feedback

www.manaraa.com

25

(evaluation in the creative process). Allowing students to interpret and decide what is, or isn’t,

acceptable feedback will push against the idea that there is a correct way for them to have made a game

and will give the students independence and final ownership of their product.

From these two studies there are two important takeaways. One is that knowledge of the

programming environment can influence design, and the resultant program, in both positive and

negative ways. If students are aware of how difficult certain functionality may be to program, they will

not design the game they may really want to make. In contrast, students will use the knowledge that

they have of the programming environment to inform their design, which is an important CS practice. A

balance needs to be struck so that students can have grand ideas for their design, but also be supported

when it comes to turning that design into a working product. The second takeaway is that students need

to be pushed to think through their designs. Both studies shared that students did not initially develop

their designs well enough that they could be used to help with the programming phase. Supporting the

coordination of ideas and refining the design is necessary for novice programmers, and both studies

indicate that this can be done through a well-designed activity.

Up to this point in the literature review, I have elaborated on how I define the goals of CS and

the ways that design, algorithms, and programming languages are used and connected within the

discipline. I also discussed the literature around the “broken pipeline” of the CS profession by outlining

the historic and current issues with the overall lack of diversity of CS students and professionals.

Additionally, I have discussed the work of various groups to improve both the quality and accessibility of

CS education to K-12 students, and noted that much of this work is being done above the elementary

grade levels. Finally, I discussed how CS education is beginning to focus on helping students to develop

design practices, and then relating those practices to programming. In the following section I will discuss

literature covering student engagement and learning and how it pertains to the two studies presented in

this dissertation.

www.manaraa.com

26

Engagement & Learning

Engagement and Classroom Context

Any activity designed to assist students in learning must be both engaging and effective for

producing desired learning outcomes. This section presents literature discussing student engagement

and theories of learning. The work of Stipek (1996) and Ames (1992) is used to describe how

instructional strategies and environmental structures are integrated to influence student motivation and

engagement. Although this work is often not associated with sociocultural theories of learning, the term

engagement is used instead of motivation to point to the sociocultural applications of this work. In this

section, theories of learning are also discussed with special attention to scaffolding, formative

assessment, Vygotsky’s Theory of Concept Formation, and the Freudenthal Iceberg model.

Student engagement is influenced by learning contexts that can position students in terms of

their performance on various tasks versus in terms of their engagement within the task and within the

classroom community (Dweck, 1986). How the goal of a task is perceived by both the student and the

teacher can influence student engagement. Goals that encourage students to perform a task for an

unrelated reward or social status are not as effective for learning as goals that encourage mastery of a

task (Ames, 1992). Performance goals tend to draw the students’ focus toward the reward or

completion of the task, which then draws the focus away from what is being learned. Mastery goals

connect the reward to the learning being done through both implementing and completing the task

itself. Both Stipek (1996) and Ames (1992) discuss practical strategies for encouraging mastery of tasks

below.

Designing an activity in a way that students perceive effort as a legitimate path to success has

been shown to be very effective (Ames, 1992; Stipek, 1996). Student engagement is tied to a belief that

success is possible (Stipek, 1996). Stipek (1996) discusses the, “use of rewards,” “the nature of tasks,”

and the, “criteria for evaluation,” (p. 105) as influential instructional practices of student engagement.

The relationship of these three practices within a learning context is important for any educator to take

www.manaraa.com

27

into account. She emphasizes that rewards should be used as little as possible and focus on the

informational, rather than the controlling, purpose of the reward. She also states that students should

recognize that rewards can be earned through effort towards the mastery of a task and that the

perceived causality of rewards should be directed away from an external cause. Stipek (1996) says that

tasks should be moderately difficult (achievable through effort), vary in format and nature, and be

personally meaningful. It is also important that students be provided choice in their tasks, which allows

for the development of intrinsic motivation for completing the task and gives the student more

ownership over the result. The evaluation aspect of instructional practices discussed by Stipek (1996)

encourages the ability for students to self-evaluate their progress and mastery of tasks, and that the

focus of evaluation be on mastery and not social comparisons (competition). In Stipek’s (1996) view,

designing instructional strategies using these suggestions will encourage students to have a, “perception

of self-determination,” and, “feelings of mastery and competence,” (p. 102). The work discussed in this

dissertation uses the information provided by Stipek (1996) by building opportunities for success

through effort, choice in the type of game the students can make, and the ability to self-evaluate their

progress as they work through the game making activity.

When students feel that a particular ability or skill is necessary to solve a difficult problem they

are less likely to try to solve it, especially if they do not feel that they have that skill or ability. Ames

(1992) calls an effort based evaluation for success a mastery goal orientation, and it is associated with

motivation. She focuses on the use of instructional strategies for the task, authority, and evaluation

aspects of a classroom structure to distinguish between performance and mastery goals. For mastery

goals, strategies for the task structure should focus on the activity being meaningful and reasonably

challenging. The task structure should also help students establish goals that are short-term and self-

referenced, as well as support students in developing and using effective learning strategies. The

structure of authority for the learning environment should allow for students to have decision making

www.manaraa.com

28

abilities, develop responsibility and independence, and develop and use self-managing skills. The

evaluation aspect of the learning environment should allow for students to self-monitor their

improvement and mastery in a private manner, provide opportunities for improvement, and perceive

mistakes as part of the learning process. Through structuring the learning environment and activity in

this manner students can focus on their own effort and learning, be engaged, and have an ability to

tolerate failure. The studies presented take into account Ames’ (1992) suggestions for setting up the

task, authority, and evaluation aspects of the activity. Students are encouraged to develop a mastery

goal orientation by being provided short-term goals while designing and creating games, having

ownership over all decisions for the game design, and being able to self-monitor their progress and

learning while working through the activity.

High student engagement is necessary due to the self-directed nature of the activities used for

the studies presented in this dissertation. However, while students are engaged, they must also be

supported in their learning throughout the activity. This support is accomplished through the use of

scaffolding.

Scaffolding
Employing scaffolding (and associated learning theories) to support student learning and ability

to accomplish a task is critical in learning environments, especially if it is enacted in a way that students

can use their own knowledge and skills in a way leading to mastery goals. Vygotsky (1978) refers to the

Zone of Proximal Development (ZPD) as the “distance” between what a student can do on her own, and

what she can do with help, and it is a very important concept when discussing scaffolding. If a student is

supported (by others or by tools) in a way that she is working on tasks that would be difficult for her to

accomplish on her own, but can still be successful, she will develop skills necessary to do this work on

her own. Utilizing the theory of the ZPD, instructional scaffolds are put into place for individual students

in a way that takes into account the individual student’s capabilities and the activity’s short and longer

term goals. The goal of scaffolding is to help students extend their current capabilities to a point where

www.manaraa.com

29

the scaffold is not needed. At the point where the scaffolding is no longer needed it is removed, or

“faded,” as the student learns and gains skills (McNeill, Lizotte, Krajcik, & Marx, 2006). However,

scaffolding that isn’t removed, and has a constant presence in the learning environment, can also be

very useful. White et al. (2002) used a constant form of scaffolding to help students learn to process

information and become metacognitive about their learning and what it means to do inquiry. This non-

faded form of scaffolding was done using computer support, with the goal being to develop a practice

amongst the students. Using scaffolding in this way, students do not need to interact as often with a

teacher but are still given the support to be independent, motivated, and successful while working on an

activity.

The scaffolding process relies heavily on the knowledge and experiences that students bring to

the learning environment and builds on these over time. Using student knowledge and experience to

inform instruction is aligned with the formative assessment model (Black & Wiliam, 2009), which

promotes the idea that the teacher first assesses where students are coming from in terms of their

experiences, knowledge, and practices. Then, with expectations of where students should be going to,

based on activity goals, the teacher determines which activities can help them get there (Figure 3).

Expectations for the participants in the studies presented here are that the students will have

experiences playing video games and may have also created a video game before. These students will

have many experiences on which to draw and will likely want to recreate games they have seen, or

make innovations to games with which they are familiar. Through the development of a video game,

together with scaffolding, it is expected that the students using will begin to develop principles that are

involved with CS, including algorithms (as CTPs) and design.

www.manaraa.com

30

Figure 3. The Formative Assessment Model

Scaffolding is provided by pencil-and-paper planning documents in study 1 and an online

planning tool called AgentDesign in study 2.

Learning Theory
Vygotsky’s theory of concept formation (Vygotsky, 1986), from which the idea of the ZPD was

developed, operates under the notion that words, tools, and symbols mediate thinking. How people

develop a concept is guided by their cultural and historical interactions and activities around that

concept, and over time that concept is refined as more experiences are gained that influence its

meaning. Following Vygotsky, Otero & Nathan (2008) distinguish between a person’s experience-based

concepts (drawn informally from their personal experiences in the world) and academic concepts

(principles and practices that are a part of a broader community, such as CS or physics). The learning

process then consists of scaffolding that facilitates students in the process of abstracting experience-

based concepts from the specific concrete episodes to which they are tied and, at the same time,

academic concepts (typically introduced through schooling) being introduced and increasingly tied to

concrete experiences, specifically to elements of experience that are being abstracted from the complex

experiences of the learner. These processes mediate one another, and are mediated through classroom

instruction and other forms of scaffolding. Vygotsky’s theory of concept formation makes clear that the

learning process is not complete until various ideas are formalized and tied to experiences, thus being

consistent both with, in this case, the computer science community and with the students’ everyday and

classroom experiences.

www.manaraa.com

31

Nasir, Hand, and Taylor (2008) and others compare “practice-linked mathematical knowledge”

to “school-linked mathematical knowledge.” They discuss differences in the way people express their

mathematical knowledge when applied to everyday versus school-based situations. They argue that

sometimes students’ mathematical performance is stronger when they use unconventional methods to

solve problems in out of school contexts such as the basketball court. They encourage readers to value

both types of knowledge but do not discuss the mediating process that schooling can play in mediating

between everyday and formal knowledge structures. Nasir, Hand, and Taylor’s work reveals the dangers

of instruction that focuses solely on disciplinary principles and fails to provide scaffolding to make

constant connections to students’ knowledge and experiences.

The iceberg model used by the Freudenthal Institute for Science and Mathematics Education

(Doorman & Gravemeijer, 2009; Webb, Boswinkel, & Dekker, 2008) emphasizes how informal,

experiential knowledge mediates and is mediated by formal concepts, symbols, and terminology. The

name, iceberg model, is a metaphor used to present the idea that conceptual development is processed

through a collection of representations. The focus of conceptual development is always on the most

formal representation, meaning the tip of the iceberg. However, all of the informal and pre-formal

representations of that concept are always under the water, supporting the iceberg’s ability to float.

When a new context of use for the formal concept is given, those informal and pre-formal

representations may be called upon again to further refine the formal concept. In the iceberg model,

students will rely on many pieces of knowledge and experiences in order to develop a formal concept.

For example, if a student is learning about long division she may begin to understand this concept by

utilizing what she understands about grouping. A conceptual understanding of long division will not

occur if the student does not have something real and concrete to relate to in order to abstract general

rules or principles. Likewise, a student learning about algorithms, such as CTPs, and design will need

concrete experiences using those algorithms and doing design. Students creating games need to be

www.manaraa.com

32

given access to examples where they can see programming code, its relationship to overarching

algorithms like CTPs, and the relationship of both to the game being developed.

Figure 4 combines the ideas of Vygotsky’s theory of concept formation and the iceberg model to

emphasize the relationship of the experiences and knowledge that a person may have to how they will

influence that person’s development of a formal concept/context-free principle.

Figure 4. Vygotsky's Theory of Concept Formation and the Iceberg Model

Figure 4 emphasizes the relationship between experiential knowledge and formalized principles

according to Vygotsky’s theory of concept formation (1986) and the iceberg model (Webb et al., 2008).

As a student gains experience, they develop pre-formal ideas about a principle that are bound to that

context, such as a specific inference from a specific observation in science. As the learner makes many of

these inferences, she is able to see a pattern or rule that can be developed into or linked to a

disciplinary principle. As these ideas become reinforced with more experiences, the principle she is

developing is both changed and strengthened. The formal principle gives the student a new way to

www.manaraa.com

33

interpret experiences and further develop her conceptual understanding of that topic as the experience-

based concepts provide an anchor for principles introduced through teaching. These two processes,

experiential knowledge developing a formal principle and a formal principle making sense of an

experience, mediate one another.

The boxes in Figure 4 relate this theoretical formulation of conceptual development to the

context and activities of the studies presented in this dissertation. Students will enter the activity with

experiences playing games, and some may even have made a game in the past. Additionally, they will

bring knowledge of how formal schooling works, as well as the processes involved in EPM informal

activities. These experiences will influence their interaction with the scaffolding experiences established

in the Game activity, the planning document for study 1 and the AgentDesign planning tool for study 2.

Through the scaffolding experiences, the students will develop pre-formal ideas about game

descriptions, defining agents, agent interactions, and CTPs. These pre-formal ideas can then be drawn

upon in their own conceptual development of what CTPs are, what it means to do design, and how

video games are structured.

Computer science consists of a set of formal symbols, language, and practices, as noted earlier.

Thus, according to the learning theories presented here, there is a need for a scaffolding tool to mediate

between students’ everyday knowledge, their ways of solving problems, their understandings of the

world around them and the programming language(s) that they are learning in school. CS involves

designing a solution to a problem, then implementing that solution using a programming environment.

Pane, Ratanamahatana, & Myers (2001) state that, “[a] large part of the programming task is to take a

mental plan for solving a problem and transform it into the particular programming language being

used,” (p. 262). However, they find that the transformation aspect of that process has been shown to be

particularly challenging for learners of CS. Pane et al. (2001) examined problem solutions written by

non-programmers, focused on the language and structure of those solutions, and then contrasted the

www.manaraa.com

34

those solutions with the affordances and constraints of popular programming environments. Their goal

was to provide evidence-based recommendations for developing future programming environments

that better suit how people naturally design and communicate solutions to problems. In one study, 5th

graders were asked to use words and pictures to explain how they would instruct a computer to

accomplish various scenarios in Pacman. In another study, adults and fifth graders were asked to use

words and pictures to describe how they would access data from a database. In both studies, Pane et al.

(2001) found that when the participants were asked to develop solutions, they had difficulty being

specific about their solutions. Both the students and adults were able to develop solutions using natural

language, but their solutions lacked the specificity to be easily translated into a programming language.

This is because the solutions that the participants developed did not contain enough detail and also

because their use of logical operators differed from the standard used in programming languages. This

gap between initial solution designs using natural language and programming languages is a common

occurrence for novice CS students, and emphasizes the need for future programming environments to

help students translate between how they naturally communicate problem solutions and the

programming languages they are using. The AgentDesign scaffolding tool attempts to mediate this

transition between students’ natural language and the programming environment in the work

presented in this dissertation.

Other studies in CS have shown that CS programming is associated with a particular way of

thinking and findings suggest that students need specific scaffolding in those ways of thinking. In the

first publication in a series titled “Commonsense Computing,” Simon, Chen, Lewandowsky, McCartney,

& Sanders (2006) examined how college students solve problems, prior to learning specific CS practices,

by studying the ways in which they approached a sorting task. They asked groups of beginning CS

students (taking a CS1 course) and non-CS students (not taking a CS course) to use everyday language to

describe how they would arrange 10 numbers in ascending, sorted order. Their work found that

www.manaraa.com

35

approximately two-thirds of the CS students could correctly describe a process to sort the numbers at

the beginning of the course, while only one-third of the non-CS students could also do so. Other findings

included that the students commonly thought of numbers as strings, and not as a type of data, meaning

that their representation of numbers in the problem solving process would not fit the computational

process that is commonly used to correctly implement a sorting algorithm. Additionally, the authors

found that the students did not utilize the most efficient methods to move through the data. In the

study, the students preferred post-test loops to iterate through the set of numbers, as opposed the

“while” loop that would more likely be used by experienced computer scientists. The most surprising

finding was that the students taking the CS1 course were less likely to develop a correct algorithm after

10 weeks of instruction in the course, meaning that the students’ methods for enacting sorting

regressed after spending time in the educational context that was supposed to help them to be better at

the task of sorting. This finding encourages CS educators to seriously examine the ways that CS,

particularly thinking through problem solving, is taught. CS Educators need to take into account what

students are bringing into the learning environment, and acknowledge that their ways of thinking and

understanding are likely different than that of the educators. The research presented in this dissertation

seeks to address this issue by leveraging students’ own language and helping them structure their ideas

in a way that will lead to connections to higher level CS practices and principles, such as algorithms

(CTPs).

Research that discusses students’ types of thinking when working in a computing environment

has shown that representations of a problem solution can influence the type reasoning that students

carry out. Parnafes & diSessa (2004) examined how representations available to students influenced the

students’ types of reasoning. They used an application called NumberSpeed, which allowed students to

adjust three turtles’ initial speed, velocity, and acceleration along a one-dimensional track and then

have the turtles “race”. NumberSpeed allowed the students to view each turtle’s position over time as

www.manaraa.com

36

either a number-list or as a visual moving image. The number-list of turtle positions over time and the

motion of the turtles were the two types of representations provided to the students. The two types of

reasoning they observed were constraint-based reasoning and model-based reasoning. Constraint-based

reasoning occurred when the students’ choices for developing a solution were guided by the constraints

of the problem, and then restricted the student’s thinking to address only the constraints, and not the

bigger picture, of the problem. The bottom-up design process discussed earlier is similar to constraint-

based reasoning in that students address issues (constraints) as they come. Model-based reasoning

occurred when the students approached a problem holistically by thinking through the problem solution

and then adjusting the model if the underlying assumptions did not seem to work. The top-down design

process is similar to how the authors described model-based reasoning in that both address the problem

as whole, and encourage the process of thinking through the problem solution. Parnafes & diSessa

(2004) found that there was a correlation between students’ use of imagery (motion) and enacting

model-based reasoning, and that when the students’ used the number-list of turtle positions over time

there was a correlation with enacting constraint-based reasoning. These findings suggest that students

are able to approach a problem as a whole and are more likely to use model-based reasoning if they are

able to visualize the problem solution. Alternately, if students are given information that is difficult to

visualize, such as a list of numbers, they are more likely to address the constraints of a problem one at a

time, and not consider the best overall solution. This work shows that the types of representations of

information available to students is important. For this dissertation, both tools used for studies 1 and 2

are meant to guide students through the process of thinking through their game designs holistically. The

visual nature of the programming environments, AgentSheets and AgentCubes, will also likely influence

students to enact a more model-based reasoning approach to developing their own games, while also

being mediated by the scaffolding tools.

www.manaraa.com

37

The nature of planning out a problem solution is to develop a model that represents what the

final product will look like and how it will function. The two studies discussed later in this dissertation

are meant to examine the effectiveness of the two scaffolding tools, the pencil-and-paper planning

document and the AgentDesign planning tool, and how they assisted students in refining their own

game ideas so that they could be implemented in an agent-based programming environment. The

nature of the programming environments, and the activity, are very visual, which will likely encourage a

more holistic approach to the design process (Parnafes & diSessa, 2004). Additionally, the programming

environments and scaffolding tools take into account the natural language ways in which the students

may describe the behavior in their games. Pane et al. (2001) encouraged future programming

environments to take into account how learners of CS may understand CS syntax given the ways that

they already know how to organize instructions and information, and the scaffolding tools, particularly

AgentDesign, are meant to address the development of the connection between natural language and

CS practices and principles. Finally, students need assistance in developing detailed solutions to

problems (Simon et al., 2006), and the scaffolding tools directly address this issue. The activities

discussed in this dissertation are intended to assist students in connecting their own ways of describing

and representing a game idea to CS practices and principles so that the game can be created in a

programming environment. Assisting students in developing these connections between informal and

formal representations is imperative for CS learners and is at the core of designing solutions to CS

problems.

Design Research Studies
As mentioned earlier, this dissertation is a design research study. Design research studies have

particular characteristics that differentiation them from typical intervention type studies (Brown, 1992;

Collins, Joseph, & Bielaczyc, 2004). These include an iterative process in which the design of the study is

evaluated and improved upon for each iteration, meaning the practice of the intervention is improved

over time. Also, the underlying theory guiding the design is refined over iterations of implementation.

www.manaraa.com

38

Design research studies are also set within learning environments, which can be very complex.

Researchers must acknowledge and account for the ways in which the environment affects the design

and enact modifications as needed by gathering a lot of data and being aware of how the data can

inform future iterations.

The work presented in this dissertation fits the criteria of a design research study in that it is

intended to be iterative and inform both the practice and theory of elementary students learning

computer science disciplinary principles and practices. The data gathered during each iteration informed

future implementations, and was processed in a way to account for the complexity of the learning

environment. For this work, the first two iterations of the study are presented. The first iteration of the

study involved elementary students using a pencil-and-paper planning document to assist them in

design and creating their own video games. From analysis of the data gathered during the first study, I

decided to introduce an intervention for the second iteration (study 2) to better assist students in the

design process. This intervention was for students to use a web-based planning tool called AgentDesign

instead of the planning document.

www.manaraa.com

39

Study 1

Before I begin explaining the study, I would like to share how I started working with elementary

students at the after school site, EPM. My involvement stemmed from a request for the Scalable Game

Design (SGD) project, which I work for as a graduate researcher, to provide a CS activity and support for

the students at the site. I agreed to help and initially started attending EPM one or two times a week

(EPM ran three days a week). The activity that we (SGD) initially decided to use was making a “Frogger”

game using a tutorial. The tutorial was commonly used by middle school students in a classroom setting

as part of the SGD project. As I worked with the students to make “Frogger” I became interested in

understanding how elementary students learn CS. This interest is what led me to develop the activity for

the pilot study and pursue my dissertation research at EPM.

The pilot study was an exploratory study to see if the students at the after school site would

enjoy making games if they were allowed to design the game and be given proper support to turn the

design into a functional program. The reasoning for having students pursue a game “design-and-create”

activity stemmed from a previous experience at the after school site. In the semester prior to this study

being done, the activity given to students had them follow a tutorial to create a game like “Frogger,” and

while the 4th and 5th grade students could complete the activity, they did not seem to enjoy it. Towards

the end of that previous semester, two female students approached me about creating their own game,

so I took some blank sheets of paper and a stapler and made them a small booklet. I then asked the

students to draw out all of their agents on separate pages and describe what each agent would do.

These students seemed to enjoy this process and were able to successfully create their own game with

some help from me. This experience became my inspiration for developing the pencil-and-paper

planning document, which is described later, to scaffold the design experience for students.

This study used an activity in which elementary students, working as a group with

undergraduates, designed a game using a pencil-and-paper planning document and then used their

www.manaraa.com

40

design to assist the group in creating the game using an agent-based programming environment called

AgentSheets (explained later). Previous work in computer science education has not focused on using

scaffolds to support elementary students designing and creating games, nor has much research been

carried out on how well elementary students use agent-based programming environments. With this in

mind, the research questions the pilot study pursued are:

1. What are the students’ behaviors when trying to create video games using an agent-based

programming environment?

2. How does the students’ behaviors align with the intended “Make Your Own Game” activity

process?

Conceptual Framework
For the pilot study of this dissertation I knew that the activity I would be providing would need

to not only provide ample support, but also be enjoyable for the students in a way that they would be

highly engaged. This conceptual framework discusses five conjectures that guided the design of the

activity. The conjectures are listed below in Table 2 and the conjecture map is shown in Figure 5.

Table 2. Study 1 Conjectures
Associated Theory Conjecture Description

Student Engagement 1:
Having students design, create, and test their own games in
groups will engage them in the activity of making a game.

Scaffolding 2:
Providing a structure, the planning document, will assist
students in designing and refining their ideas.

Scaffolding 3: A completed planning document will assist groups in creating
their games using AgentSheets.

Scaffolding 4:
The groups will not require a lot of support from the researcher
because of the scaffolding (planning document) used in the
activity.

Concept Formation 5: Making games will help students learn CTPs.

As stated earlier, the two students that designed and made their own game together seemed to

enjoy the activity more than following a tutorial. From this occurrence I latched on to the idea that

www.manaraa.com

41

engagement and ownership would be important elements for helping the students complete a video

game creation activity and enjoy it.

I developed the planning document, as a non-faded scaffold, to support the students during the

design process. Similar to White et al. (2002), I used a constant scaffold in the form of the planning

document (Figure 6) to guide students through a practice of top-down design, as well as to assist them in

developing a standard practice of design. Additionally, the scaffold provided prompts for when students

would need to look up documentation, which is a typical CS practice. With little to no programming

experience, the students needed the scaffold to guide them through connecting their designs to known

algorithms (computational thinking patterns) that were described in a separate online resource. The

expected outcomes were that the groups would complete the design and successfully use that design to

find programming code, learn about CTPS, and create a game using the AgentSheets programming

environment.

www.manaraa.com

42

Figure 5: Pilot Study Conjecture Map

www.manaraa.com

43

Conjecture 1: Having students design, create, and test their own games in groups will engage them in

the activity of making a game.

This pilot study was guided by a desire to engage the students and assist them in being

successful in creating a video game. Structuring the activity and environment in a way where the

students could feel like they could create a game through effort (develop a mastery goal orientation)

and have ownership over the final product was a way to encourage high engagement (Ames, 1992). By

having the activity use student ideas to design their game, they did not need any special abilities, skills,

or knowledge to complete the design process. Using their own ideas gave the students authority within

the activity, which addressed one of Ames’s (1992) three structural components. The students were able

to develop responsibility and have a level of independence through their decision making power. To

address the task structure of the activity, the pencil-and-paper planning document (shown in Figure 6)

was visual, but also provided prompts, so that students could see the progress they were making and

what they had left to complete. The prompts for the planning document were specific, but gave

students space to express their ideas through drawing or writing. Additionally, students could track their

own progress in the programming environment by comparing what they had designed for to what was

completed. The students were also given control over their own evaluation through the ability to decide

if the design was what they wanted. During the programming aspect of the activity, the programming

environment also allowed for students to test their game as they created it without having any high-

stakes failures. Given that students were the evaluators of the design, and the programming

environment allowed for incremental testing, the students were provided the opportunity to learn to

tolerate failure. And in the cases where they could not overcome that failure on their own, they always

had me, the researcher, around for support.

www.manaraa.com

44

Figure 6: Pencil-and-Paper Planning Document

The embodiment of this conjecture in the activity was primarily facilitated through the

participant, discursive, and task structures. Students gained ownership through the participant and

discursive structural components by having the power of choice for the design. The undergraduates

working within the group were participants as facilitators of the activity. In contrast, the elementary

students were the members of the group providing the game ideas and were also the decision makers

for the group. Additionally, through the task structure of having the game shared after it was created

the students also had a motivation to make something great for their peers.

Conjecture 2: Providing a structure, the planning document, will assist students in designing and refining

their ideas.

As discussed earlier by Robertson & Nicholson (2007) and Kelleher & Pausch (2006), novices

typically do not have fully developed ideas when they design. However, the students would have initial

Project
Description

Agent Depictions
and Behavior

Game Board
Representation

Interaction and
CTP identification

www.manaraa.com

45

ideas that they could bring into the activity. Using those ideas as a starting point, the planning document

provided a scaffold to assist the students in refining their ideas. Students could use the project

description as a starting point, and the scaffold would help them to identify agents, define individual

agent behavior, and then identify interactions. The planning document would help the students and

undergraduates to work within their ZPD (Vygotsky, 1978) to fully design their game.

The embodiments of this conjecture were through both task and tools & material structural

components. The tool that supports students is the planning document, and it provides the space and

prompts for what students needed to complete for the design. And although it is implied, completing

the planning document was a necessary task for groups. Also, within completing the planning document,

a necessary and important task was for the groups to use a reference to identify CTPs to access useful

programming code.

Conjecture 3: A completed planning document will assist groups in creating their games using

AgentSheets.

As discussed in conjecture 2, the planning document was designed to assist the groups in finding

helpful programming code for behavior that they had designed for. Without this part of the scaffold, the

students would only have their ideas, written in their own words, to help them create programming

code. In some instances, the natural language descriptions have been all that was needed to create

code, but in general this was not the case. The planning document was meant to help the students move

from natural language descriptions to programming code by identifying behavior and then using an

online reference to get code. Again, the scaffold extended the students capabilities, but did it in a way

that the students could make sense of the higher thinking and learn (Vygotsky, 1978).

The embodiment of conjecture 3 was carried out through the activity task structure and the

activity tools & materials structure. The groups were tasked with using a reference to find programming

www.manaraa.com

46

code using their design. The AgentSheets programming environment was the tool they used to actually

do the programming.

Conjecture 4: The groups will not require a lot of support from the researcher because of the scaffolding

(planning document) used in the activity.

The nature of scaffolding is to help learners extend their capabilities (McNeill et al., 2006). The

planning document was designed in a way that the groups would be able to complete the activity, and

make a game, as long as they completed the document. Since the planning document would provide any

necessary information as it was needed, any support from the researcher should have been as minimal

as possible.

The embodiment of this conjecture was present in all of the structural components of the

activity. The students were the primary idea generators and decision makers, and so the researcher

would not be very useful during the design process outside side of facilitation. The planning document

also provided all of the necessary prompts and space necessary for the groups to develop a plan. And

finally, the planning document combined with the programming code reference would have given the

groups the necessary information to turn their design into a working game.

Conjecture 5: Making games will help students learn CTPs.

The final conjecture was that students would learn about CTPs. If a student is operating within

her ZPD, she is extending what she can do, but she is doing so in a way that she is learning. Scaffolds are

intended to be removed (McNeill et al., 2006), and although the scaffold used for this activity was not

intended to be removed, it did not ignore the fact that as the students experience CTPs and relate them

to their own understanding, they will learn (Vygotsky, 1986).

The embodiments of conjecture 5 were through the planning document, the AgentSheets

programming environment, the researcher’s assistance, and the programming code resource. By

working with all of those materials and resources, the students would be able to build connections

www.manaraa.com

47

between their own ideas and the formal concept of CTPs. Essentially, conjecture 5 is embodied in the

process of creating a final product for the Game activity, which must use CTPs.

The activity process that was designed, while informed by my understanding of scaffolding and

motivation, was primarily influenced by what I knew of computer scientists’ practices. Successful

computer scientists design their products first, and commonly rely on documentation to help with

unknown information. For students to learn about these practices, and not just about programming,

they needed to be given an activity that was motivating and supported them when they needed it.

The 5th Dimension Activity System
The setting for this pilot study, an after school program, also had its own theoretical guidance.

The after school program, called El Pueblo Mágico (EPM), employed a 5th dimension activity system

(Cole & Engestrom, 2007). The essential aspect of a 5th dimension activity system is that there is a, “joint

activity between a university and community institution,” (p. 496) as indicated in Figure 7. Most 5th

dimension sites are located within the local community, and are commonly held during after school

hours at a K-6 school. At these locations university and elementary students participate in activities

meant to enhance the children’s intellectual and social development. 5th dimension activity systems

provide the community institutions with activities that contribute to their students’ learning. The

university institution benefits by having a location for their students to learn about fieldwork and the

development of young minds.

Figure 7. 5th Dimension Activity System

University Local Community

Common Activity Commmon Activitymon Ac

yy L

www.manaraa.com

48

In the case of EPM, the joint activity is between university undergraduates taking an education

psychology course and elementary students in 2nd through 5th grade. At EPM, elementary students and

undergraduate students worked together in groups to complete various activities offered by the

program. The available activities were created so that expertise and knowledge could come from any

source, student or undergraduate, and be utilized by the group to complete the activity. These activities

were designed for the groups, which ranged in size from 2-6 participants, to involve aspects of creativity

and play. The program ran for 2 hours, three days a week, throughout a semester with some elementary

students attending multiple days and undergraduates only attending one day a week. If an elementary

student attended multiple days, the activities she pursued changed for each day depending on what her

group chose for that day. For example, a student attending on a Monday and a Tuesday would have

separate projects and groups for each day, so she would only work on a given activity one day a week.

The available activities included Board Games, Digital Storytelling, World Maker, Make Your Own Game,

and others.

The “Make Your Own Game” Activity
Goal

The overarching anticipated outcome of the “Make Your Own Game” activity, which will now be

referred to as the Game activity, was for students to create good games with minimal help from an

expert. Within this larger goal was for students to also learn about the purpose of design, understand

computational thinking patterns (algorithms), develop ways of evaluating their work, and align their

identity with CS.

In the following sections the AgentSheets agent-based programming environment and activity

are explained. The ordering is intended to assist you, as the reader, in understanding the language and

context of the activity in a way that the process and pencil-and-paper planning document make sense.

AgentSheets Programming Environment Overview
The AgentSheets programming environment (Figure 8 and Figure 9) is designed to be an

accessible platform for young students to do programming. The premise of the environment is that

www.manaraa.com

49

there are agents and each agent has its own behavior. Multiple instances of an agent can be placed

within a game play environment called a worksheet, which will be referred to as the game board from

this point forward. The game board is shown in Figure 8 and is where the agents’ programmed behavior

is the only thing that guides what they will do once the program is running.

Figure 8. AgentSheets Game Board

Figure 9 shows how agents can be created and programmed in AgentSheets. This is done

through accessing the depiction and behavior editors from the project gallery window in the

programming environment. Agents can be created and accessed from the Gallery window, shown in

Figure 9A. The buttons at the bottom of the Gallery access both the behavior and the depiction of the

selected agent. An agent’s behavior can be edited in the Behavior window, Figure 9B. Behaviors are

Game Board

www.manaraa.com

50

controlled by methods and rules, where rules are composed of IF-ELSE statements. To create a rule,

conditions can be added to the IF side of a rule from the Conditions window (Figure 9C) and actions can

be added to the THEN side of a rule from the Actions window (Figure 9D). To edit an agent’s visual

representation, called a depiction, the Depiction window is used (Figure 9E). The Depiction window is a

simple drawing space that can also import images.

www.manaraa.com

51

Figure 9. AgentSheets Gallery, Depiction Editor, & Behavior Editor

The behavior of each agent is controlled by methods and
rules. The primary method is called “While Running,” and the
rules within this method are constantly looped through from
top to bottom while the game is running. Other methods can
be given names and called on an individual basis.

Rules are formatted as IF-THEN statements, if the conditions
inside the IF are true at a given time, the actions in the THEN
are carried out. When a rule is evaluated as true, all other
rules below it are skipped until the next time the method is
run.

The conditions are drag and drop,
testable scenarios that will result
in a true or false being given.

The actions are drag and drop acts
that an agent will carry out if the
rule’s conditions evaluate as true.

The depiction editor provides a simple drawing
tool to create a visual representation of an
agent. How the agent will look on the game
board is shown in the upper right-hand corner of
the window.

The gallery is where agents are
created. An agent’s default and
alternate depictions are shown here.
The depiction and behavior editors
can be accessed here.

A B

C D
E

www.manaraa.com

52

Game Activity Process
For the Game activity, groups composed of elementary and undergraduate students were asked

to pursue a top-down design approach to creating their game. With this approach, students were to

design the game on a pencil-and-paper planning document before they got on a computer and worked

with the AgentSheets programming environment. This approach served three purposes. One purpose

was to provide a model for, and experience with, planning out a solution to a genuine and meaningful

computing problem. The second was to ensure that each group understood what they wanted to do

before working with the programming environment. From that understanding the students would then

be able to learn how to create AgentSheets code from their own language and thinking. The third

purpose was to give the groups a sense of ownership and progress over what they were creating, which

would then lead to a higher level of motivation and interest in the activity.

The intended process of this activity consists of three parts: (1) design a game using the planning

document, (2) create the designed game using AgentSheets, and then (3) test out their game with other

people and possibly make changes. This process is further explained below.

Designing the Game
The task of designing a game was facilitated by a planning document. The planning document

was a pencil-and-paper, structured, non-fading scaffolded guide for each group to analyze their initial

idea for a game, identify its important components, and then refine those important pieces. This work

was done primarily on paper using the planning document and included sections to be filled out (Figure

11-Figure 14). Table 3 gives a general description of how Figure 11 - Figure 14 relate to the necessary

activities to design a video game.

www.manaraa.com

53

Table 3. Practices for designing a video game using the planning document
 Design Practices Design Practice Details Figures

A Project Description
i. Describing the game idea

ii. Recording a general statement about the game
11

B Agents

i. Identifying agents
ii. Describing and recording agent behavior

iii. Drawing representations of the agents
iv. Choosing if agents were human, computer, or not

controlled

12

C Game Board i. Drawing a representation of what the game will look like 13

D Patterns
i. Identifying interactions between agents

ii. Associating interactions with computational thinking
patterns

14

The planning document (Figure 10) provided space for all of the necessary work of designing a

game to be done, including drawing and writing. The initial ideas of any game could be described or

drawn in an open area on the Project Description page (Figure 11). Agents could have their visual

representations sketched out and their behavior described on the Agents pages (Figure 12). A visual

representation of the game could be drawn on the Game Board page (Figure 13), which had a grid that

modeled how AgentSheets organizes agents. Interactions between agents could be identified,

described, and associated with computational thinking patterns on the Patterns page (Figure 14). Figure

11 through Figure 14 in the following sections show the (8.5x11 inch) pages of the planning document

meant to guide students through the four activities shown in Table 3. Figure 10, below, shows the

process that a student or group may go through when designing a game using the planning document

pages.

www.manaraa.com

54

Figure 10. Planning Document Pages and Work Flow

Project Description Page
The project description, discussed in Table 3A, provided the initial prompt to describe the game.

This was essentially a blank page that could be written or drawn on in any way that was needed to

express the game idea (Figure 11).

Figure 11. Project Description

www.manaraa.com

55

Agents Pages
Multiple pages of Figure 12 were provided in the planning document for the identification of

agents, where two agents could be designed on each page. Agents needed to be named, drawn, and

have their behavior described during the design process. The name of an agent could be written at the

top of each grey space on the page (Table 3B-i). There were three spaces available for different

representations of an agent to be drawn, in case the agent would have a different look at different times

in the game (Table 3B-iii). A free space was provided for describing the behavior in which drawings or

natural language descriptions could be recorded (Table 3B-ii). Also, three checkboxes were available to

identify if an agent was “user controlled,” “computer controlled,” or was supposed to be in the

“background,” (Table 3B-iv).

Figure 12. Agents

Game Board Page
Another task that the planning document prompted was for the game play environment to be

drawn out (Table 3C). AgentSheets has visual representations of agents organized within a grid-based

www.manaraa.com

56

gameplay environment, so a blank table of squares was used here (Figure 13). These blank squares were

to be filled in using sketches of agents that were already drawn on the Agents page in Figure 12.

Figure 13. Game Board

Patterns Page
The final task prompted by the planning process was to develop an association between the

agent interactions and computational thinking patterns (CTPs) (Table 3D). CTPs are common

phenomena that happen in spatially oriented games, such as collision or tracking. The planning

document prompted this task through the page shown in Figure 14. On the Patterns page, three

columns were available to describe what agents would have an interaction with one another (Table 3D-

i), what the natural language description of that interaction was (Table 3D-i), and the CTP that fit the

interaction (Table 3D-ii). A list of patterns was available on a websiteiii, which also provided sample code,

that would assist in the creation process using AgentSheets.

www.manaraa.com

57

Figure 14. Patterns

Building the Game
Once the design was finalized, the groups were expected to build the game on the computer

using the AgentSheets programming environment. This activity required creating and drawing the

agents identified in the planning document in AgentSheets and translating the everyday language

descriptions of behaviors to AgentSheets code. All of the information needed to do this was intended to

have been worked out in the planning document. Most of the behavior in games occurs where there is

an interaction between two agents, so examples of needed code would be given when CTPs were

matched to interactions using the online references.

Testing
The final aspect of the Game activity process was to have the game be tested by other people.

Testing was meant to serve two purposes, one was to see if the game operated the way the group

wanted it to and the other was to see whether or not it was a good game. This was due to the possibility

that the choices the group made in creating the game would make it not fun to play. From this point,

any changes that needed to be made based off of feedback could be carried out.

www.manaraa.com

58

Figure 15 expresses the relationship between the planning document and the general cyclical

planning process of design, building, and making changes based on testing. The figure associates the

pages of the planning document with the Game activity process and access points for where a redesign

could focus.

In Figure 15, a student wanting to make a game would start by describing and recording their

game idea (step 1), then would identify and record the needed agents based on that description (step

2). From the list of identified agents the student would draw a representation of each agent (step 3).

Next, the student would record each agent’s behavior (step 4) and figure out which agents will interact

with one another in the game (step 5). The student would then need to associate the behaviors and

interaction descriptions to computational thinking patterns (CTPs) (step 6). It is at this point that the

student may be done working with the planning document, unless a redesign is needed.

If the design developed in steps 1-6 seems as robust as possible, the student then creates the

game using AgentSheets (step 7). The final step in the cycle is for the student to test their game and

then possibly make changes based on how the game plays or feedback that was received (step 8).

www.manaraa.com

59

Game Design Process Game Design Process Game Design Process Game Design Process

Figure 15. The Game activity process in relation to the planning document

 Game
Description

Draw Agent/Game
Representations

Identify Individual
Agent Behavior

Identify Interactions

Associate with
Computational

Thinking Patterns

Identify
Agents

Create
AgentSheets

Game

Testing & Possible Redesign

(Figure 11) (Figure 12)

(Figure 13)

(Figure 14)

Step 1 Step 2

Step 3

Step 4

Step 5 Step 6

Step 7

Step 8

www.manaraa.com

60

Study Design & Analysis
This study was designed to be a participant-observation, ethnographic study (LeCompte &

Schensul, 1999). The researcher played the role of an expert at EPM for students taking part in the

Game activity (Figure 15) and participated heavily in helping the groups of elementary and

undergraduate students to make their games work. Group activity was video recorded (explained later)

with the purpose of creating profiles of student activity from analysis. The profiles of activity from video

were then used to compare to the intended activities of the design process and provided a general

sense of what students chose to focus on when designing.

Participants
Undergraduates & Training

As stated earlier, undergraduate students worked cooperatively with elementary students to

select and complete the activities available at EPM. Their participation in the after school program was

required as part of an education psychology course they were enrolled in. Most of the undergraduate

students were pre-service elementary teachers and the population was comprised of almost all women.

It was not expected for the undergraduate students to have strong content knowledge about

CS; they were required to attend training for the Game activity. The training was divided into two parts

and was given prior to the start of the after school program for the semester. The first training focused

on CS content knowledge and lasted two hours. This first training also provided an introduction to the

AgentSheets programming environment. In the training, the undergraduates individually created a

simple maze game where a “Hero,” agent needed to get to the end of a maze and avoid a “Bad,” agent.

This was carried out through direct instruction by the researcher, who was an AgentSheets expert,

where the undergraduates followed along individually using their own computers. The second training

focused on the pedagogical content knowledge needed to carry out the activity at EPM. This involved

learning about the planning document that they would use to design a game with their groups, see

Figure 11-Figure 14. The second training lasted approximately an hour and consisted of the researcher

explaining the purpose of the planning document and having the undergraduates go through the

www.manaraa.com

61

process of designing a game. This was done in small groups while the researcher provided support as

they went through the process. The undergraduates were given instructions that the designs could be as

elaborate as possible, as long as they were clear and complete about what should happen in the game.

They were also made aware that the planning document would assist them in finding the necessary code

through the identification of interactions and computational thinking patterns that were explained on a

separate websiteiii.

Elementary Students
The elementary student participants in this research were in grades 2 through 5. This participant

population was representative of the school’s demographics, shown in Table 4. Some of the elementary

students had past experience creating games using AgentSheets from previous attendance at EPM, but

none had experienced the design approach used in this research.

Table 4. School demographic informationiv

Grade Level
2ND

GRADE
3RD

GRADE
4TH

GRADE
5TH

GRADE
TOTAL

American Indian or Alaskan Native
F 0 0 1 0

3
M 1 0 0 1

Asian
F 0 0 0 2

4
M 0 1 1 0

Black or African American
F 0 0 0 0

1
M 0 0 1 0

Hispanic or Latino
F 17 10 11 15

116
M 16 16 17 14

White
F 2 12 6 2

43
M 4 10 3 4

Two or More Races
F 1 0 0 1

6
M 1 0 1 2

TOTAL 42 49 41 41 173

Role of the Researcher

A third type of participant in the Game activity was myself, the researcher, and I was the expert

for AgentSheets at EPM. My role at EPM was to assist the groups working on the activity but not act as a

teacher. I have a degree in CS and had the most CS content knowledge at EPM. Besides providing

www.manaraa.com

62

assistance at EPM, I was also responsible for training the undergraduate students to carry out the

activity.

Data Sources
The data sources for this research included video, the planning document (Figure 11 - Figure 14),

and the resultant games. Additionally, there are two types of video data. One type of video data is a

stationary camera that focused on a group throughout their design and game creation tasks. The other

type of video collected was from a head cam that the researcher wore while providing assistance at

EPM.

Groups were selected to be recorded by the stationary camera on the basis that they were

pursuing their first attempt of the Game activity, had an early interest in creating a video game, and the

researcher believed that they would complete the activity. This opinion was based on the group having a

general idea of what they wanted to make and all of the members of the group agreeing that they

wanted to make a game. The recordings of these groups started within the first two weeks of the

semester. In total, four groups were recorded throughout their Game activity process (Figure 15). Three

of these groups completed a playable game.

Planning documents and completed games were collected from all students. The data was used

to triangulate what students intended to do with their processes of activity and what the results of that

activity ended up being.

Design Practices Coding Scheme
The development of the coding scheme was guided by tasks that students were asked to

complete during the design phase, which precedes the creation and testing phases, of making a video

game. In the design portion of the Game activity, students were prompted to complete a set of tasks

intended to assist their development of what they wanted their game to look like and do. The codes

shown in Table 5 are a priori codes and activities that I was interested in seeing if the elementary

www.manaraa.com

63

students were able go demonstrate. Table 3 (reproduced below) shows all of the practices that students

were expected to enact while they designed their games.

Reproduction of Table 3. Practices for designing a video game using the planning document
 Design Practices Design Practice Details Figures

A Project Description
iii. Describing the game idea
iv. Recording a general statement about the game

11

B Agents

v. Identifying agents
vi. Describing and recording agent behavior

vii. Drawing representations of the agents
viii. Choosing if agents were human, computer, or not

controlled

12

C Game Board ii. Drawing a representation of what the game will look like 13

D Patterns
iii. Identifying interactions between agents
iv. Associating interactions with computational thinking

patterns
14

Table 5 emphasized the relationship of these practices to the coding scheme. The purpose of

using this coding scheme was to understand what top-down design practices the groups were engaged

in during the design process.

Table 5. Design practices coding scheme

Code Description
Design

Practice(s)

Discussing Overall Game
Discussion amongst the group about what they want in
their game. General ideas/brainstorming that may
result in being written down.

Table 3A-i
Table 3A-ii

Identifying Agents
Discussing and identifying the agents that will be
required for the game to do what they want.

Table 3B-i

Discussing Behavior
Talk about what agents will do outside of brainstorming
ideas.

Table 3B-ii

Recording Behavior
Someone writes down what an agent will do during the
gameplay.

Table 3B-ii

Discussing Depiction Discussion of what agents will look like in the game. Table 3B-iii

Drawing Depiction
Someone is actively drawing a representation of what
an agent will look like, can be either digital or on paper.

Table 3B-iii

Selecting Agent Controller
Deciding and recording whether an agent will be user
controlled, computer controlled, or just be stationary in
the background.

Table 3B-iv

Discussing Game Board
Discussion of what the game environment will look like
and how the agents will be placed.

Table 3C-i

Drawing Game Board
Drawing out an example of what the game
environment will look like.

Table 3C-i

www.manaraa.com

64

Discussing Interactions
Talk about what happens because of two agents
interacting in some way.

Table 3D-i

Recording Interactions Someone writes down when two agents interact. Table 3D-i

Identifying CTPs
Talk about what computational thinking patterns are
occurring in the game based on the behavior and
interactions they are planning to include.

Table 3D-ii

This coding scheme was used to analyze the video data of the four groups to develop a profile of

how each group participated in the design process.

Analysis Methodology
Coding

An analysis was carried out on the design practices of the four groups recorded by the stationary

camera using the coding scheme previously described (Table 5). For each groups’ video that showed

how each group proceeded through the design process, the group was given a code (Table 5) for a

timeframe of their video if at least one person in the group was participating in that activity. This coding

was done directly from the video. In many cases there were overlapping activities as different members

of the groups performed different tasks concurrently. All activities were coded. There were also times

during the design process where the group was not performing any of the activities from the coding

scheme, which led to gaps of time in the raw coding. “Off-task,” behavior was coded, but is not included

in the analysis because there was commonly one person in the group that was “off-task,” while others

were engaging in a codable activity. Notes were also taken to describe what was happening during that

timeframe for an activity. Table 6 provides an example of the raw coding that was performed and is

shown along with audio transcription excerpts during that timeframe. Please be aware that the game

this group was designing was not a school appropriate game. The inappropriateness of the game was

addressed with the students outside of the coded examples shown below and it was not completed. The

students are designated by S1 and S2, and the undergraduates by U1 and U2. Non-verbal activities are

described in square brackets.

www.manaraa.com

65

Table 6. Example of coded design data with accompanying transcript excerpts
Task Start End Total Transcription
Drawing Depiction 0:00:00 0:11:05 0:11:05 S2: [Smiles at camera, then continues

drawing on a paper. There are already
drawings on it.]
…
S1: What should I draw?
U1: So draw, he was drawing the nerd,
you want to draw the bully? Is that the
bully you want? [directed to S1]
…
U1: We can color it too.
S1: We color in the pants blue and give it
like a black [inaudible] around it.
U1: Ok.
S1: And you know like maybe some
ripped up pants.
U1: Yeah.
S1: That'd be cool.

Discussing Behavior 0:09:40 0:15:30 0:05:50 …
Researcher: Alright, so, on our planning
sheet write down what the nerd does
[motions to location on planning
document where behavior goes]. What
does the nerd do?
S2: Stands there.
S1: Just stands there and cries.
Researcher: Ok, he stands there...
S1: He pees his pants.
Researcher: And then what happens?
S1: Pees his pants.
U2: He gets [inaudible] right? [directed at
S2]
S1: No, he's scared and he pees his pants.
S2: Nooooooo.
U2: No? What happens to him then?
[directed at S2]
S2: [while drawing on a separate paper]
[inaudible] they stand like that until they
get killed [inaudible].
U1: Are we gonna have them moving?
Researcher: Yeah, do they move at all?
S2: Why would they move?
U2: Don't you throw one into the other
one?
S2: Yes.

www.manaraa.com

66

Researcher: And if they move, when do
they move?
U2: You have to tell'em that they get
thrown. One of them gets thrown into the
other one.
U1: So you wanna have like a crowd of
nerds. Here's like a bully, here's the
crowd of nerds right? [motioning with his
hands]
U1: Do you guys swing nerds at the
crowd? Is that correct?
S2: No. That's not correct.
…

Recording Behavior 0:11:55 0:12:21 0:00:26 U2: Right there. [points at S2] [inaudible]
the nerds [inaudible]. Write that down.
[S2 starts writing in the planning
document]
U1: So how does, how does angry birds
work?
S1: Say Whaaat? [high pitched voice]
U2: [inaudible] Just say, there's a group of
[inaudible] there and [inaudible] throw.
Researcher: [brings over some blank
papers and puts them in front of S2] So if
you want, draw what it will look like. So
you have a bunch of like, nerds over here
right? [motions to one side of blank page]
That they're going to be thrown into?
What goes on this side [motions to other
side of paper] if it's like angry birds?
S1: [makes some funny noises]
U1: That looks beautiful. [directed at S1
and her drawing]
S1: Thanks.
U1: So, so, so. So can you tell me how
angry birds is [inaudible]? 'Cause I've
never played it.
S2: [inaudible] [pushes the planning
document away after writing some]

Discussing Game Board 0:12:04 0:15:05 0:03:01 U1: So, so, so. So can you tell me how
angry birds is [inaudible]? 'Cause I've
never played it.
S2: [inaudible] [pushes the planning
document away after writing some]
S1: But I forgot to draw [inaudible, picks
up marker] Well, it's sort just of like a...
Where you like, hmm, I'll just draw it

www.manaraa.com

67

'cause I can't [inaudible]. It's hard to
explain. [S1 starts drawing]
U1: [inaudible] Yeah, yeah.
S1: I'm making a [inaudible, doll?] on
there because [inaudible], I just don't
want to.
U1: Yeah, no, that's fine.
U1: That's a slingshot?
S1: Yeah, that's supposed to be the
slingshot.
U1: Ok.
U1: So, in our game do we want, are we
gonna have a slingshot? Or are we just
gonna have a guy?
S1: We're gonna have a guy.
S2: We need a guy with a slingshot there.
S1: Well you know what...
U2: Yeah, we can't, it's gotta like [makes
arm motion moving her hand up slowly
like a cannon].
U1: Ok, [inaudible].
…

From these data a count of instances of coded activity, total amount of time spent on each

coded activity, and average amount of time spent on each coded activity during the design process was

calculated. A timeline graph was also constructed showing each group’s practices throughout the design

process. The purpose of coding in this manner was to understand what design practices from Table 3

each group exhibited and how often the practices occurred.

Coding Confirmation
I did a comparison of coded results to confirm that coding directly from video, and not a

detailed transcript of group conversation and activity, effectively captured the practices of a group. To

do this, I took a segment of video for group 1 that was coded using video, transcribed that video

segment, and then coded the textual data. I chose a video segment that contained a diverse set of codes

after coding directly from video so that I could have many opportunities to check for overlap. Comparing

the two sets of coded data, the consistent overlap of all but one code confirmed the original coding

method. The one exception found by doing a comparison was that instances of the code “Discussing

www.manaraa.com

68

Depiction,” were not always captured during video-only coding while the group members were also

drawing agent depictions.

Inter-rater Reliability
Inter-rater reliability was carried out for the coding process just described. An outside coder

focused on a 15 minute segment that was previously coded and found to have a diversity of codes from

the original coding carried out by myself, the researcher. The outside coder and I were in agreement for

all of the coding that I had previously done (19 coded segments). However, the outside coder double

coded five additional instances, and added one coded timeframe that I did not have. This provides an

agreement rate of 19/25 => 76%.

Three of the fived double coded segments, for which the outside coder observed behavior that I

did not identify, consisted of one coder using the “discussing overall game” or “drawing overall game”

codes and the other coder using a more refined code for the observed behavior, such as “identifying

agents.” The other two double coded segments included the outside coder using the “discussing

interactions” code where I used the “recording behavior” code and also where the outside coder used

the “discussing depiction” code where I used the “identifying agents” code. Both of these codes were

understandably used by the outside coder after reviewing the data.

Findings
The primary finding from the data was that the groups focused primarily on what their game

would look like during the design process. They did this through either heavily working on the look of

the agents or the look of the game board. There was minimal discussion on how agents in their game

should behave and almost no discussion of the programming processes or what computational thinking

patterns were present in agent interactions.

Design Practices
In this section the results of the four groups’ design process analysis are shown and explained.

For the coding results (Table 7-Table 10) all codes are shown, but it should be noted that there were no

instances of the following codes for any of the groups: Selecting Agent Controller, Recording

www.manaraa.com

69

Interactions, and Identifying CTPs. Also, codes that were observed to consume a lot of the groups’

design time are highlighted in the tables to assist the reader.

Group 1: Angry Nerds
Group 1, who worked on designing a game called “Angry Nerds,” spent the most amount of time,

approximately 34 minutes, discussing and drawing out representations of what their agents would look

like. The drawing was primarily facilitated by the elementary students in the group. In contrast, the

group only spent about 11 minutes discussing and recording what would happen in their game and that

was primarily facilitated by the undergraduates in the group. Group 1 was also the only group to discuss

an interaction that would occur in their game during the design process. Table 7 shows how often these

practices occurred and how much time was spent on each.

Table 7. Group 1 coding results
Code Instances Total Time Spent Average Time Spent
Discussing Overall Game 3 0:07:07 0:02:22
Discussing Depiction 8 0:03:14 0:00:24
Drawing Depiction 7 0:31:08 0:04:27
Selecting Agent Controller 0 0:00:00 0:00:00
Discussing Game Board 2 0:03:19 0:01:40
Drawing Game Board 1 0:03:01 0:03:01
Identifying Agents 3 0:01:22 0:00:27
Discussing Behavior 4 0:06:59 0:01:45
Recording Behavior 8 0:03:43 0:00:28
Discussing Interactions 1 0:00:49 0:00:49
Recording Interactions 0 0:00:00 0:00:00
Identifying CTPs 0 0:00:00 0:00:00
TOTAL 37

A timeline for group 1 (Figure 16) shows the emphasis that the group put on drawing what their

agents would look like throughout the design process.

www.manaraa.com

70

Figure 16. Group 1 timeline of planning process

Group 2: Maze Game
Group 2, which created a maze type game, gave even less attention to what would happen in

their game than group 1. This group chose to primarily focus on how their overall game would look.

They dedicated almost 24 minutes of the time they spent designing to discussing and drawing

representations of the game board. There were also very few instances of the group discussing behavior

(4) and then recording their decisions (3), which resulted in approximately 5 minutes of time devoted to

deciding what they wanted to happen in their game.

Table 8. Group 2 coding results
Code Instances Total Time Spent Average Time Spent
Discussing Overall Game 4 0:08:09 0:02:02
Discussing Depiction 1 0:00:32 0:00:32
Drawing Depiction 3 0:01:03 0:00:21
Selecting Agent Controller 0 0:00:00 0:00:00
Discussing Game Board 10 0:16:16 0:01:38
Drawing Game Board 9 0:07:40 0:00:51
Identifying Agents 3 0:01:21 0:00:27
Discussing Behavior 4 0:01:45 0:00:26
Recording Behavior 3 0:02:54 0:00:58
Discussing Interactions 0 0:00:00 0:00:00
Recording Interactions 0 0:00:00 0:00:00
Identifying CTPs 0 0:00:00 0:00:00
TOTAL 37

Figure 17 shows the timeline of group 2’s design practices. Throughout the design process, the

group switched discussion between what the overall game would be and what it would look like when

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00 55:00

Discussing Overall Game
Discussing Depiction

Drawing Depiction
Discussing Game Board

Drawing Game Board
Identifying Agents

Discussing Behavior
Recording Behavior

Discussing Interactions

www.manaraa.com

71

played. Very little discussion occurred around the details of their game, such as what their agents would

look like and do.

Figure 17. Group 2 timeline of planning process

Group 3: Bear’s Night Out
Group 3 created a game called “Bear’s Night Out.” Their original plan was to have each

elementary student in their group design their own game and then they would compile all of the games

together as different levels within a final version. The design practices that the group exhibited were

fairly distributed with the exception of extreme cases around discussing what the overall game would be

and what interactions would occur. Discussing the overall game dominated much of the conversation

that this group had during the design process. In contrast, the group did not discuss which agents would

interact at all.

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00

Discussing Overall Game
Discussing Depiction

Drawing Depiction
Discussing Game Board

Drawing Game Board
Identifying Agents

Discussing Behavior
Recording Behavior

Discussing Interactions

www.manaraa.com

72

Table 9. Group 3 coding results
Code Instances Total Time Spent Average Time Spent
Discussing Overall Game 17 0:17:35 0:01:02
Discussing Depiction 4 0:00:31 0:00:08
Drawing Depiction 7 0:03:46 0:00:32
Selecting Agent Controller 0 0:00:00 0:00:00
Discussing Game Board 6 0:04:32 0:00:45
Drawing Game Board 6 0:03:14 0:00:32
Identifying Agents 10 0:03:58 0:00:24
Discussing Behavior 9 0:08:03 0:00:54
Recording Behavior 7 0:03:41 0:00:32
Discussing Interactions 0 0:00:00 0:00:00
Recording Interactions 0 0:00:00 0:00:00
Identifying CTPs 0 0:00:00 0:00:00
TOTAL 66

The timeline of group 3’s design practices (Figure 18) shows that the group repeatedly discussed

what the overall game would be. They frequently used each student’s game idea as a starting point to

refine the individual ideas and the group’s understanding of what they would eventually want to create.

This practice of discussing each student’s game in general, then refining the ideas, led to an interesting

pattern in the timeline, which is indicated below in Figure 18. This group came close to enacting the full

top-down design process that was set up by the Game activity, but stopped short by not considering the

interactions that would occur in their game.

Figure 18. Group 3 timeline of planning process

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00 55:00

Discussing Overall Game
Discussing Depiction

Drawing Depiction
Discussing Game Board

Drawing Game Board
Identifying Agents

Discussing Behavior
Recording Behavior

Discussing Interactions

www.manaraa.com

73

Group 4: Zombie vs Ghosts
Group 4 created a game called “Zombie vs Ghosts.” Their planning process consisted almost

entirely of talking about and drawing individual agents (approximately 32 minutes). At the point that the

group felt comfortable getting onto the computers to start creating their game they had not discussed

the game board at all, and had only minimally discussed what agents would do within their game

outside of their initial brainstorming(1 minute).

Table 10. Group 4 coding results
Code Instances Total Time Spent Average Time Spent
Discussing Overall Game 8 0:07:49 0:00:59
Discussing Depiction 14 0:05:53 0:00:25
Drawing Depiction 7 0:26:00 0:03:43
Selecting Agent Controller 0 0:00:00 0:00:00
Discussing Game Board 0 0:00:00 0:00:00
Drawing Game Board 0 0:00:00 0:00:00
Identifying Agents 3 0:00:27 0:00:09
Discussing Behavior 1 0:01:00 0:01:00
Recording Behavior 0 0:00:00 0:00:00
Discussing Interactions 0 0:00:00 0:00:00
Recording Interactions 0 0:00:00 0:00:00
Identifying CTPs 0 0:00:00 0:00:00
TOTAL 33

Group 4’s focus on what the agents in their game would look like is apparent in the timeline

shown in Figure 19. Once the group had discussed their general ideas for the game, they sporadically

discussed design components other than the depictions.

Figure 19. Group 4 timeline of planning process

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00 45:00 50:00 55:00

Discussing Overall Game
Discussing Depiction

Drawing Depiction
Discussing Game Board

Drawing Game Board
Identifying Agents

Discussing Behavior
Recording Behavior

Discussing Interactions

www.manaraa.com

74

The intention of having each group design their game first was to make the process of building

the game easier and accessible to novices. Once the design was finalized using the planning document,

the groups would know how their game would look and have example code to draw upon when they

needed to program the agent behavior. The following section discusses the common result across all

groups when they tried to create their games in AgentSheets and had not fully thought out agent

behavior, identified interactions, or researched the CTPs that would help them do the programming.

Creating a Game from the Design
Examining data from the four groups’ creation processes showed that the lack of a clear

understanding of agent behaviors, and almost no consideration of interactions between agents, resulted

in a high need of assistance from the researcher. The following excerpts come from group 4 trying to

create their game in the AgentSheets programming environment. There are two undergraduates, U1

and U2, and two elementary students, S1 and S2, in the group. The line numbers pertain to the excerpt

only. In the first excerpt the group is trying to figure out how to get their zombie to move using the

arrow keys which is the User Control computational thinking pattern.

Excerpt 1
Line # Speaker Transcript

1 U1 We need our agents to have their movements and stuff.

2 S1
I know how. I know how. [moves AgentSheets computer back
to his control]

3
[U2 returns and S2 shifts his focus to his computer and the two
pairs seem to separate again.]

4 S1 Watch, I'm gonna make this "ghost dog" move.
5 U1 Let's start with the "zombie,” 'cause that's our main guy.

6
[S2 and U2 are having their own conversation to the side. They
appear to be trying to open AgentSheets. U2 encourages S2 to
participate with the rest of the group.]

7 U1
[shifts his chair to have a better view of the AgentSheets
computer] Let's get the "zombie" moving.

8
[S2 still tries to get on the internet, and U2 questions him on
what he wants to do on there.]

9 U1
Oh, it has to move onto the background right? [looking over the
shoulder of S1 on the AgentSheets laptop] The background...
So that's the background.

10 [U1 points at stuff on the screen while S1 works]

www.manaraa.com

75

11 S1 We need Ian.

The task in the excerpt above was primarily pursued by Undergraduate 1 (U1) and Student 1

(S1), and ends with an acknowledgement that they can’t figure out what to do by playing around with

the environment and need the help of the researcher. They have a very general idea of what they want

to happen in their game (line 1), but do not understand how to use the arrow keys to do so (lines 2-9),

which leads to them needing the researchers help (line 11).

Another episode from later on in group 4’s game creation process that resulted in their needing

help from the researcher is shown below in excerpt 2. In this excerpt they are trying to make the game

end when the “ghost dog,” agent is next to the “zombie.”

Excerpt 2
Line # Speaker Transcript

1 U1

OK, here we go. [S1 looks back at the AgentSheets computer.]
When it sees a zombie, it needs to stop and do something,
right? Not when it sees it though, when it's next to it. When it's
immediately next to it. [inaudible] this. [presses a key] When
it's, when it's immediately... When it's next to...

2 U1 Alright, so...

3 S1
[S1 points to something on the screen, U1 is still in control of the
computer] Press that, no press that [inaudible].

4
[U1 presses where S1 points and S1 shows him which option to
pick for what the agent should recognize]

5 U1 [inaudible reading of the rule] Um...
6 U1 [S1], so then what? What do I do?
7 U1 This has to be [inaudible], right? [inaudible] [presses a key]
8 S1 Mm hmm.
9 U1 That's right. What does this zero mean?

10 S1 I don't know. [turns toward rest of room and shouts] Ian!
11 U2 Ian.

For excerpt 2, Undergraduate 1 (U1) is exploring some of the spatial testing conditions in

AgentSheets, such an agent being, “stacked immediately above,” or being, “next to,” another agent (line

1). However, he doesn’t know which one to use, so U1 and S1 continue to play around with the rules for

the agent (lines 2-9). They eventually reach a point where they decide that they need help again and call

the researcher over to their group (lines 10 and 11).

www.manaraa.com

76

These types of “try, then call for help,” episodes were the norm once groups started to create

their games in the AgentSheets programming environment. With each group giving so little attention to

the behaviors, interactions between agents, and identification of CTPs, they needed considerable

assistance from the researcher to get their games to work.

Discussion & Implications
Leveraging students’ previous experiences with games motivated students to design and create

a video game, but there was little to draw upon from their designs to get them to complete the activity

without considerable help from the researcher. It seems that the students were able to draw on their

prior knowledge, but were unable to move to the next step of “making inferences,” or in this case

programming agent behavior, identifying interactions, or identifying CTPs and getting sample code, as

shown in Figure 20 (a refined version of Figure 4 from the literature review).

Figure 20. Refined Vygotsky's Theory of Concept Formation and the Iceberg Model

In Figure 20, the terms “modeling,” and “design,” are used to represent the move from concrete

experiences to generalizable rules (principles) as well as moving in the other direction—tying formal

www.manaraa.com

77

language and symbols to concrete experiences. The groups in this study rarely got to the point of fully

designing a game and creating an instance of it in AgentSheets, or generalizing from the specific

experiences, and instead ended up calling on the researcher to help them with these processes. They

were able to draw on their experiences to create depictions of their desired agents and to say some

things about the behaviors they wanted their agents to have, but when they got to the point where they

had to now move into the programming environment and use CTPs, they consistently called on the

researcher. Instead of serving a scaffolding role, to help the group slowly, but iteratively, establish the

tools that they would need to do some parts of the Game activity on their own the next time, for

whatever reason, I, as the researcher instead ended up actually doing the work for the group.

It is likely that the mere presence of the researcher may have prevented students from even

imagining, or identifying with, the role of programming for themselves. The scaffolding that was

necessary to apply principles and to generalize experiences was missing from both the planning

document and the help that the expert was able to provide the group in this context. The results of this

study indicate that a better scaffolding tool is needed and should be present always in the working

environment of the students. A better scaffolding tool would provide more assistance in the

bidirectional process of moving from concrete experiences to generalizable rules (principles-

programming activity) as well as moving in the other direction—tying formal language and symbols

(CTPs) to concrete experiences.

Another possibility for why students had difficulty working within the programming

environment is that they simply did not see the structure of the game environment as consisting of

interactions among agents, behaviors, and game-play environments. Making these three components

more transparent could also benefit the students.

In future iterations of this activity, students would benefit from a more explicit mentioning of

the specific principles (CTPs) that they are expected to apply when creating agents, behaviors, and

www.manaraa.com

78

game-play environments. In addition, more transparency about the structure of the games as consisting

of interactions between agents, behaviors, and game-play environments would be helpful. Students

could also benefit from a more linear structure that would require that they move from one step before

going to another. Leveraging students’ experiences with the formal language and practices associated

with CTPs, will lead to a more robust understanding of programming code and is a necessary aspect of

the Game activity.

www.manaraa.com

79

Additional Scaffolding Needed

Study 2

The study presented in this section is intended to create an improved process to engage

elementary students in CS through video game development at EPM. From the findings discussed

earlier, the major obstacle to students completing the Game activity without help from the researcher

stemmed from students moving from their ideas to creating AgentSheets code. Specifically, students did

not focus much on discussing agent behaviors or identifying interactions between agents. Most of the

focus for designing a game went into how the individual agents or overall game would look.

This iteration of the Game activity incorporated more explicit opportunities to record agent

behavior, identify interactions between agents, and associate interactions to CTPs. Figure 21 emphasizes

where additional scaffolding is needed to elicit the necessary design practices for elementary students

to create their own game.

Figure 21. Areas needing improved scaffolding for the Game activity

The areas from Figure 21 that are identified as needing additional scaffolding required that the

activity be modified so that sample CTP code was easily accessed from, and relatable to, student

descriptions of behavior and interactions. This was accomplished through a scaffolded computer-

assisted planning tool, called AgentDesign, which I created.

I hypothesized that through the improved AgentDesign planning tool the elementary students

would be less likely to call out for help and be more likely to use computational thinking patterns to

create their games. I further hypothesized that the AgentDesign planning tool would help students

Game
Description

Draw Agent/Game
Representations

Identify Individual
Agent Behavior

Identify Interactions

Associate with
Computational

Thinking
Patterns

Identify
Agents

Create
AgentSheets

Game

Testing & Possible Redesign

www.manaraa.com

80

understand the structure of a game as consisting of interacting agents, behaviors, and game-play

environments. This hypothesis was derived from the notion of scaffolding as it appears in Vygotsky’s

theory of concept formation and the Iceberg model. The AgentDesign planning tool provided additional

scaffolding and explicit mention (and choices) of the terminology associated with the principles that

students were expected to learn. By applying and reapplying both the principles (in the form of words

and symbols) to their experiences with the game design, it was expected that students would be able to

build out more generalized rules that could be used and applied both in later parts of their current game

design, and future game designs. The scaffolding offered through the AgentDesign planning tool

provided some guidance, thus alleviating the need for constant calls for help from the researcher.

Research Questions
This study sought to answer the following research questions:

1. What understanding of CTPs do elementary students develop when using the improved

scaffolding tool, AgentDesign?

2. In what ways does the AgentDesign planning tool help, or hinder, elementary students’ process

of creating video games?

Please note that I built AgentDesign to address the issues that occurred in study 1.

Study Design
This study focused on the use of the AgentDesign planning tool and the design practices of

elementary students during the Game activity.

Study Environment
The study environment for this follow-up study continued to be at El Pueblo Mágico (EPM). The

theoretical structure of EPM remained the same as what was explained earlier, although there were

organizational changes from the previous study that effected how, and who, the elementary students

worked with while doing the Game activity.

The first organizational change was that elementary students and undergraduates did not work

together in static groups. Instead, the undergraduates were in charge of activity stations and the

www.manaraa.com

81

elementary students were free to move between these stations as individuals. For example, there were

typically 2 or 3 undergraduate students at the Game activity station. For each station, each group of

undergraduates at a station moved to a different station every 3 weeks.

The second organizational change for the Game activity was that there were CS experts, and not

just the researcher, available to assist with the Game activity. This was partially due to the availability of

CS undergraduate students participating as part of an undergraduate research program. The inclusion of

other CS experts was also necessary since the researcher was not able to be at EPM throughout the

week.

The third organizational change was that the activities were organized by an online social

networking platform called iRemixv. iRemix was used to organize the activities into pathways and gave

students benchmark goals for each activity station. Students were also able to share their work on

iRemix through the uploading of videos and pictures or by writing about them in a blog post. An

explanation of how the Game activity was facilitated by iRemix is presented in a later section.

How the organizational changes affected the study participants is explained in the following section.

Study Participants
There were four types of study participants for this study; elementary students, undergraduates,

CS experts, and the researcher.

Undergraduates
The undergraduate participants continued to be a group of mostly females and pre-service

elementary teachers. Their participation in EPM was also still an aspect of their practicum experience for

an education psychology course.

At EPM, the undergraduates were in charge of activity stations in groups of 2-4 for three weeks

at a time. The undergraduates were given the opportunity to choose their preferred activity stations and

were generally assigned to the stations they requested throughout the semester as long as there was

www.manaraa.com

82

not an abundance of interest for specific stations. Their tasks were to assist the elementary students

working through the iRemix pathway for their respective activity station.

All undergraduates were given training on the Game activity prior to the start of EPM for the

semester. This training lasted approximately 40 minutes and covered how to use the AgentDesign

planning tool and the AgentCubes Online programming environment. During the training, they observed

me, the researcher, design and create a simple game using the two resources.

Elementary Students
The elementary student participants at EPM, like the undergraduates, had a similar composition

to that of the earlier study. They were a representational group of the overall school population and

were in grades 2-5 (shown in Table 4). In total 23 students started the design process by creating an

AgentDesign account, but many other students participated in the activity station that did not design

games. Some of these students simply played games on the AgentCubes Open Arcade, or simply started

to make a game without designing it first. Of the 23 students that created an AgentDesign account, 18

actually started designing a game, with one student creating two separate designs. The gender

distribution of the student participants was 6 girls and 12 boys.

As explained earlier, due to the organizational changes, the elementary students’ participated

on more of an individual basis for this study. The students were able to move between activity stations

as they wished and were not required to work with a group on any activity.

CS Experts
There were 3 CS expert participants at EPM, excluding the researcher, with at least one CS

expert at the Game activity station for each day of the after school program. The experts had a

background in CS, but not necessarily any prior CS pedagogical content knowledge. One of the experts

was a graduate student taking a course on qualitative research, and two others were undergraduate

students pursuing degrees in CS. One undergraduate expert had prior experience with the Game activity

at EPM from the previous semester, while the other CS experts were new to the activity. All CS experts

www.manaraa.com

83

participated in the training with the undergraduates to learn about the AgentDesign planning tool and

AgentCubes Online.

Researcher
The researcher had a similar role as explained earlier for study 1. However, he only attended

EPM for one day a week on a consistent basis. If the CS experts felt that they needed assistance, they

could have requested that he come on other days, but this only happened due to scheduling issues

when the CS experts were not able to attend EPM.

Revisiting the Game Activity
The overarching goal of the activity for study 2 was still for students to create video games with

minimal help. The more specific goals, that students will understand the purpose of design; understand

CTPs (algorithms); develop ways of evaluating their work; and align their identity with CS, were also still

present in the activity. However, due to both technical limitations and in order to introduce an

alternative scaffolding tool, the programming environment and design scaffolding tool have been

changed from what was used in study 1. Additionally, the guidance and instructions for how to complete

the activity was moderated through a social media network, iRemix. These changes are explained below.

The AgentCubes Online programming environment was used instead of AgentSheets for two

reasons. The primary reason was that the available technology at EPM, chrome books, would not allow

for AgentSheets to be installed. A secondary reason was that students had issues saving their work in

the prior years of offering the Game activity at EPM when using AgentSheets. Since AgentCubes Online

is web-based, all of the students’ work was automatically saved and instantly shareable through the

Scalable Game Design Arcade. Although it was new to the activity, the AgentCubes Online programming

environment description is located in Appendix B, since it is so similar to AgentSheets in the ways it was

used and functions for this study and a complete description here is not necessary.

As the intervention for this study, the scaffolding tool used to support students through the

design process was also switched to an interactive, web-based application that I developed. This

www.manaraa.com

84

scaffolding tool will be referred to as the AgentDesign planning tool, and its purpose was to improve the

support for students as they went through the design process. The tool is further described in a later

section.

Using iRemix, the students accessed activity pathways that they could choose to complete. Each

activity station at EPM had a pathway represented on iRemix that offered a beginning, advanced, and

expert level task to complete. For the Game activity, I asked students to design a game using

AgentDesign at the beginner level, create the game using AgentCubes Online at the advanced level, and

then share the game using iRemix, and possibly make changes, at the expert level. The advantage of

using iRemix was that the links to the design scaffolding tool and programming environment, as well as

helpful videos, could be easily accessed by students with clear instructions on what to do with them.

Below are screenshots of the beginner, advanced, and expert level tasks that the student would see

while working on the Game activity. Presented with each pathway level are figures showing what parts

of the Game activity process from study 1 (see Figure 15) that each level focused on.

The beginner level pathway focused on the design aspect of the Game activity process. Students

should have described their games, identified agents, decided on agent representations, described

individual agent behavior, and identified interactions along with corresponding CTPs during this part of

the activity using a tool that I developed called AgentDesign.

www.manaraa.com

85

Figure 22. Focus of Pathway Beginner Level for Game Activity Process

The figure below provides a screenshot of what an elementary student would have seen as a

prompt for the beginner level task for the iRemix Game activity pathway. The beginner level prompt for

the pathway asked the students to design their game using the AgentDesign planning tool, but first

encouraged them to look at games that had been made using AgentCubes. Asking the students to look

at previously made games was meant to provide some context to the students about what could be

created using the programming environment. Links were available to the students on this beginner level

page for both AgentDesign and a collection of games called the Scalable Game Design Arcade, so the

pathway, and iRemix, was the primary access point of the Game activity for all students.

www.manaraa.com

86

Figure 23. iRemix Pathway - Beginner Level

Creating the game was the focus of the second level of the Game activity pathway, as shown in

the following figure.

Figure 24. Focus of Pathway Advanced Level for Game Activity Process

Once students had completed the beginner level pathway and designed a game using my

AgentDesign tool, they could then move on to creating their game using AgentCubes Online as part of

the advanced level of the Game activity pathway (page shown below). The intention was that the

www.manaraa.com

87

students would use a summary of their design, called the summary page and explained later, to create

their games. Along with the prompt asking students to use their design summary page to assist them in

creating a game, a short video explaining how to get started using AgentCubes Online was available for

the students to watch. Once the students were ready to begin creating their game they could use the

available link to access AgentCubes Online.

Figure 25. iRemix Pathway - Advanced Level

Finally, the feedback loop from players of a student’s game was used as part of the expert level

of the Game activity pathway, shown below. Using feedback from other people playing the student’s

game, the student could choose to redesign different parts of their game, such as the overall idea, the

agents, or how the agents would behave in the game.

www.manaraa.com

88

Figure 26. Focus of Pathway Expert Level for Game Activity Process

The task for the expert level of the Game activity pathway (shown below) was for students to

have their games tested and then decide if they wanted to change any part of the game. Students

reaching this expert level would need to have a working game and be given feedback about its

playability. The reasoning for incorporating the social feedback aspect of the pathway was to emphasize

the importance of the social aspect of any software development, which is especially true for the

development of video games.

www.manaraa.com

89

Figure 27. iRemix Pathway - Expert Level

Using iRemix as the portal to access the activity, the students were given information and access

to the necessary tools (AgentDesign and AgentCubes Online) as well as provided prompts to clarify each

part of the activity. In the following section, the intervention for the second study (AgentDesign), and its

theoretical basis is described through an explanation of the conceptual framework of the study and a

description of the tool.

Conceptual Framework
The conceptual framework for study 2 focused on supporting the elementary students in

thinking about, recording, and accessing CTPs so that they would be able to successfully build a game

using AgentCubes Online. The five conjectures that were developed as part of this process are shown

below in Table 11. Figure 28 shows the conjecture map (Sandoval, 2004, 2014) for these five conjectures

and each are described in this section.

www.manaraa.com

90

Table 11. Study 2 Conjectures
Associated Theory Conjecture Description

Concept Formation 1: Designing a game with the tool will help the students learn
algorithms.

Scaffolding
Concept Formation

2: Students need to COMPLETE the design process to learn about
the CTPs and to create their game.

Concept Formation 3: Students will learn the PRINCIPLES of CS through the scaffolded
process of matching everyday language with CTPs.

Scaffolding
Study 1 Results

4:
Students will focus more on other aspects of the design process,
and less on drawing pictures of aspects of a game while they
design if they are not given the opportunity to draw pictures.

Study 1 Results 5: The tool will help the students build the game.

The Game activity was intended to provide students with the opportunity to develop a sense of

individual CTPs that were free from any individual game context while they created their own video

games. Each CTP (algorithm, which represents a CS principle) represents a different phenomenon that

programmed agents can enact (e.g. collision, generation, transportation, etc.). By using each individual

CTP multiple times in a particular game design it was expected that students would establish more

general principles regarding those CTPs that could then be applied to any future game. For this to occur,

the activity related the principle of CTPs to the students’ own experiences and ideas and allowed for the

students to develop the connection between the two. This was the role of the AgentDesign planning

tool, especially in cases where there is no formal teacher of the activity like EPM.

www.manaraa.com

91

Figure 28. Study 2 Conjecture Map

www.manaraa.com

92

Conjecture 1: Designing a game with the tool will help the students learn algorithms.

The intention of the AgentDesign planning tool was not only to help students make games from

their own ideas, but also to help them learn CS principles. Algorithms are an important CS principle for

computer scientists to be aware of because algorithms provide solutions to common problems

regardless of the specific language the computer scientist is working within. Furthermore, learning

about algorithms becomes an invitation to the CS discipline by giving students access to a more

authentic CS experience than simply learning to program. For games created using agent-based

programming environments an important set of algorithms are CTPs. The CS principle of “algorithms,” in

this study express common ways to program game behavior like collisions, pushing, absorption,

tracking, and many other phenomena that occur in visual games.

Additionally, from study 1, the evidence showed that the pencil-and-paper scaffolding tool did

not support the students in a way that they could access important algorithms (CTPs), let alone learn

about them. In Figure 29 the crossed out words represent the design practices and CS principles that

students did not complete or attain, words that are not crossed out represent observed student

practices from the data in study 1. Using the new scaffolding in the form of the AgentDesign planning

tool, it is hypothesized that the students will now be able to both access and learn about algorithms

using a centralized, scaffolding tool.

www.manaraa.com

93

Figure 29. Disconnected Learning in Study 1

The theoretical basis for this conjecture is based on the formative assessment model (Black &

Wiliam, 2009), Vygotsky’s theory of concept formation (Vygotsky, 1986), and the Freudenthal Institute’s

iceberg model (Doorman & Gravemeijer, 2009; Webb et al., 2008).

AgentDesign was designed taking into account where the students would be coming from and

where it wanted them to go. Students taking part in the Game activity will likely have played many video

games before, know of many stories, and maybe even made a video game in the past. As part of the

design, a goal of AgentDesign was to lead students to the CTPs that they would need to create their

games using AgentCubes Online. Through this process, students would also be able to connect ideas

that were theirs, and made sense to them, to formalized CS principles. This connection building was

influenced by Vygotsky’s theory of concept formation and the iceberg model (see Figure 4). Concept

formation is a cyclical process in which students make sense of formal knowledge through processing

www.manaraa.com

94

their own knowledge and experiences and vice versa. For example, using AgentDesign a student can

decide that something must happen if two agents touch one another (which she would have come up

from experiencing other games), connect that idea to the formal CTP (algorithm) called collision, and

then make sense of future collision scenarios using the formal algorithm she just learned about. The

AgentDesign planning tool was created to mediate this process. The process of adding the computer-

assisted scaffolding tool (AgentDesign) is similar to that used by Basawapatna’s (2012). Basawapatna’s

(2012) developed a visual tool, called the Simulation Creation Toolkit, to assist middle school students in

creating science simulations using animations of CTPs. He found that students using his toolkit were able

to create simulations with heavy guidance. In comparison to my own work, the focus of his research was

on the area of Figure 29 that is toward the bottom. Using his toolkit students would be assisted in

building experiences with CTPs while making games and simulations. I am working to take that I idea

one step further by using a scaffolded tool to assist students in relating their current and past

experiences to CTPs in order to develop conceptual understanding.

As just mentioned, the embodiment of this conjecture in the study was carried out through

AgentDesign. Specifically, scaffolding student learning of algorithms is done when the student describes

an interaction between agents, and then connects that description to a CTP. This is explained later in the

description of the AgentDesign planning tool.

Conjecture 2: Students need to COMPLETE the design process to learn about the CTPs and to create their

game.

The AgentDesign planning tool was developed to scaffold the process of designing a game, so

that the design could be used to assist in creating that game in a programming environment. From the

results of study 1, it was clear that additional scaffolding was needed to support descriptions of agent

behavior, identifying interactions, and connecting those interactions to CTPs (see Figure 21). In study 1,

none of the 4 groups that were examined connected their ideas to CTPs during the planning process (see

www.manaraa.com

95

Table 7 - Table 10). According to Vygotsky’s theory of concept formation (Vygotsky, 1986), students

would not be able to learn about CTPs without connecting their own experiences and ideas to the

formal knowledge that is provided within the AgentDesign planning tool. Since the groups in study 1 did

not complete the planning document, I believe that they were not prepared to begin creating their

games since they never accessed this formal knowledge. Using scaffolding, AgentDesign guides students

through the design process so that they can see what the next steps are, as well as access the formal

knowledge that would be needed to create their games. And by completing the design process, not only

will students access this knowledge, they will be provided the opportunity to USE the terms associated

with that new knowledge.

Transitioning the scaffolding to a more interactive medium, like a web application, has been

shown to be useful in supporting student learning. Various affordances of the computer technology

make it easier for students to manipulate their ideas and representations. White et al. (2002) found that

using a software based tool to scaffold student activities helped them to learn about inquiry and be

metacognitive. In other work that has used technology to support student learning, Wu et al. (2000)

found that the software tool they used, called eChem, supported student conceptual development of

chemical representations through building and viewing models and representations.

Within the AgentDesign planning tool, the embodiment of this conjecture was done through the

explicit prompts explaining what the students needed to do. These prompts led students to important

information about CTPs that would both assist the students in creating their games, as well as present

the CTPs in a way that made sense in relation to their ideas.

Conjecture 3: Students will learn the PRINCIPLES of CS through the scaffolded process of matching

everyday language with CTPs.

In order to mediate conceptual development, the design process prompted students to identify

CTPs from their descriptions of behavior and interactions. Most students designing a game will likely

www.manaraa.com

96

have played other games in the past and will be able to recognize CTPs that they would need for their

game from an available list presented to them. Recall that CTPs are a set of algorithms that represent

common phenomena in games. These can include, but aren’t limited to, collision, absorption, tracking,

pushing, etc.

Using the scaffolding tool, AgentDesign, the students were presented with a list of CTPs and

were asked to draw upon both their prior experiences with games and their own language in the design

to make an association of their everyday language descriptions to the CTPs (Figure 33). Developing this

relationship between experiential knowledge and formal knowledge is an important aspect of concept

development (Otero & Nathan, 2008; Vygotsky, 1986). This activity focused directly on the cyclical

nature of concept formation to not only relate students’ prior experiences and knowledge to certain

CTPs, but also provide symbolic principles with which to interpret past and future experiences with

gaming and programming CTPs.

In the embodiment of this conjecture (AgentDesign), students are provided opportunities to

make sense of formal CTPs and the terms that describe them, like collision, in ways that that make sense

to them. They begin designing by only using their own thoughts and words, but then have opportunities

to connect those everyday words to the formal terms and concepts presented to them using the

AgentDesign planning tool.

Conjecture 4: Students will focus more on other aspects of the design process, and less on drawing

pictures of aspects of a game while they design if they are not given the opportunity to draw pictures.

Analysis of student behavior from study 1 showed that discussing or drawing out visual aspects

of the game during the design process was a common focal point for 3 of the 4 groups (see Table 7 -

Table 10). The data from study 1 also found that the high focus on the look of the game (agent

depictions and game board drawing) that students had was at the expense of designing what they

wanted to happen within the game (agent behavior, interactions, CTPs). Given that finding, a design

www.manaraa.com

97

choice was made to not provide an opportunity for students to draw during the scaffolded design

process. This was intended to reduce the amount of time that students spent focusing on the look of

their game.

The embodiment of this conjecture in the activity was within the AgentDesign planning tool,

which is discussed in detail later. Within AgentDesign, students were not given the ability to draw

anything. All descriptions of the visual aspects of the game were carried out through text.

Conjecture 5: The tool will help the students build the game.

Results from study 1 provided evidence that since students did not complete the pencil-and-

paper planning document they had difficulty creating their game using AgentSheets. The planning

document was intended to address many of the questions that the students commonly asked, such as

how to make an agent move using the keyboard (the user control CTP) or how to make one agent die

when it’s touched by another agent (collision CTP). The scaffolding tool used in this iteration of the study

was designed to provide clearer guidance of what needed to be done for the students to be successful.

The primary embodiment of this conjecture for the activity were the prompts that students

were given while working through the design process. In study 1, the students generally skipped the

entire page that asked them to identify interactions and CTPs. In contrast, the AgentDesign planning tool

clearly required students to move on to the next necessary step, which addresses the previous problem

of students skipping parts of the design process. The process of designing a game using AgentDesign for

this study was sequential and forced, meaning that the students will complete their designs. And if the

students complete their designs, they will have lots of information, in the form of CTPs and sample code,

to build their games.

An additional embodiment of this conjecture is that the CTP information was located within the

planning tool, instead of on a separate resource. The students were able to see their everyday language

descriptions alongside the formal language descriptions of CTPs and sample code. Being able to see why

www.manaraa.com

98

the sample code was relevant, and having easy access to it, would allow the students to use their design

information to create their games without needing to ask an expert to explain every common

phenomenon that CTP algorithms address.

The AgentDesign Planning Tool
The AgentDesign planning tool was created to address the difficulties students had transferring

their own ideas to the programming environment. This was a new scaffolding tool for the Game activity

and was developed by me. It was written using JavaScript, HTML5 and PHP. The intention of making the

tool web-based was to provide cross-platform access, which includes not only Apple and Windows

operating systems, but also tablets and smartphones. This was a necessary design choice as more

schools are moving away from traditional computers and towards tablets.

The purpose of transitioning the scaffolding tool to the AgentDesign planning tool, from the

previously used pencil-and-paper planning document from the first study, was to address the problems

identified in study 1. AgentDesign guided students through a highly scaffolded, step-by-step process of

describing the game, identifying agents, describing agent behaviors, identifying interactions between

agents, and connecting interactions to CTPs and sample code. This was intended to assist students in

developing the disciplinary principles of algorithms and design, and also identify key aspects of video

game structure. There was also less emphasis on the look of the game and agents by not having a space

for drawing to be done within the tool, since that may be a reason that students did not focus on agent

behavior using the pencil-and-paper version. The design practices that AgentDesign focuses on are

shown in Table 12.

www.manaraa.com

99

Table 12. AgentDesign Planning Tool Design Practices
Design Topic Design Practice Details
1. Initial Idea Recording the initial game idea.
2. Agent Names Identifying and recording agent names from the project description.
3. Agent States Naming different representations an agent will have.
4. Agent Behavior Describing individual agent behavior.
5. Identifying Interactions Identifying which agents will interact.
6. Interaction Description Describing the interaction between two agents.
7. CTP Association Associating CTPs to an interaction that has been described.

AgentDesign provides four sections that guide students through the design practices listed in

Table 12. The four sections are the (A) Project Description, (B) Agents, (C) Selecting Interactions, and (D)

Building Interactions. There is also a fifth section of AgentDesign, the (E) Summary, that does not have

students work through any of the design practices, but allows them to view their design as a whole. The

association between the sections of AgentDesign and the design practices from Table 12 are shown in

Table 13.

Table 13. AgentDesign Planning Tool Sections and Design Practices
AgentDesign Section Design Practices
Project Description 1. Initial - Recording the initial game idea.

2. Agent Names – Identifying and recording agent names from the project
description.

Agents 3. Agent States - Naming different representations an agent will have.
4. Agent Behavior - Describing individual agent behavior.
6. Interaction Description - Describing the interaction between two agents.

Selecting Interactions 5. Identifying Interactions - Identifying which agents will interact.
Building Interactions 6. Interaction Description - Describing the interaction between two agents.

7. CTP Association - Associating CTPs to an interaction that has been
described.

Summary None - Review of design as a whole.

The following sections elaborate on how each design practice is enacted within AgentDesign.

www.manaraa.com

100

Project Description
The project description section of AgentDesign asks students to write their initial game idea

(design practice 1) and identify agents (design practice 2). These tasks were purposefully placed within

the same section so that a visual confirmation could be made for each agent identified. Figure 30 shows

an example of what the project description section looks like when a game has been described and

agents are identified.

Figure 30. AgentDesign Planning Tool - Project Description

Initial Idea
The initial idea (Figure 30A) prompts a student to “Write what will happen in your project.” It

encourages the naming of agents and descriptions of behavior. The prompt also asks students to

elaborate how the game or simulation, depending on what the student is making, will end.

A text box is available for the student to write out the project description. It is not required, or

expected, that everything needed for the game will be recorded at such an early point, but it provides

an area for the student to start brainstorming. As the student realizes that parts of the game description

www.manaraa.com

101

have not been included, she is free to return to this section and add more information. Also, since the

AgentDesign planning tool is designed for elementary students, the text for the project description is

automatically saved once the student clicks out of the box.

Agent Names
Also in this section is a prompt to identify anything that could be an agent named in the project

description, which would be any noun in the description (Figure 30A). An agent is identified and named

using an “ADD New Agent,” button and a text input prompt within this section (Figure 30B). As the

individual agents are identified they are listed below the naming prompt and their corresponding name

changes to the color green in the project description (Figure 30A). The color change provides an

indication to the student for which agents have been accounted for and which still need to be identified.

Figure 31. AgentDesign Planning Tool - Agents

www.manaraa.com

102

Agents
For each agent identified in the project description section, a new space is created in the agents

section (Figure 31) of the AgentDesign planning tool for agent states to be identified (design practice 3),

behavior to be described (design practice 4), and interactions to be identified and described (design

practices 5 & 6). Agents can be selected from a list at the top of the section, the “cat,” agent is currently

selected in Figure 31A.

Agent States
In some cases an agent may have different states during the game play. The computer-assisted

planning tool uses a button labeled “Add Shape,” and a prompt to ask whether or not an agent will look

differently during the gameplay (Figure 31B). Only the naming is available here, and not an ability to

draw out the agent’s representation. This was a purposeful choice due to the students focusing on

drawing in prior research.

Agent Behavior
A text area is available to describe an agent’s behavior in everyday language (Figure 31C). This

area is specific to each agent, and is intended to be a refinement of the general description written in

the project description section. Similar to the functionality of the project description text box, the

information is saved once the student clicks out of the box, so deliberate saving is not necessary.

Selecting Interactions Section
Within each agent’s section a button labeled “Select Interactions,” is available that opens a

popup window (Figure 32) allowing for the selection of any interactions that the current agent will have

with other agents, the user, or all agents (design practice 5). The window shows the current agent’s

behavior description and checkboxes for all of the agents they had previously identified from the project

description as well as the possible user of the game. For each agent they identify as having an

interaction with the current agent, a new textbox (left side of Figure 31D) is made available in the agents

section for a description of that interaction to be written. The selecting interactions window (Figure 32)

www.manaraa.com

103

also highlights all previously identified agents as green as an indicator for the student to see what agents

have already been described in the selected agent’s behavior.

Figure 32. AgentDesign Planning Tool - Selecting Interactions Window

Building Interactions
Building interactions is accessed through a button labelled “Build Interactions,” in the agents

section (Figure 31C). A “Build Interactions,” button is available for each interaction that was selected

earlier. Clicking on the button opens a window (Figure 33) where the interaction description is available

along with descriptions of CTPs. Describing interactions (design practice 6) and then choosing what CTP

aligns with that description (design practice 7) has the intention of moving the student from everyday

language to programming language and development of understanding algorithms through associating

student ideas with CTPs.

Interaction Description
While it may be obvious to explain what an agent will do on its own, the students may not

consider what will happen in cases where it interacts with another agent. A good example of this would

be all of the things that happen when the frog in “Frogger,” is hit by a car; such as change the frog

depiction, give a signal that the player lost, and stop/restart the game. This space allows for a refined

written description of what will happen in interaction using everyday language. There are two locations

where an interaction description may be written, one is in the Agents section (Figure 31C, left) and the

other is in the Building Interactions window (Figure 33A).

www.manaraa.com

104

Figure 33. AgentDesign Planning Tool - Building Interactions Window

CTP Association
Using the interaction description as a guide, the CTPs that match the interaction can be

identified. A list of CTPs is available in the build interactions window (Figure 33B). When a CTP is

selected from the list, general information about the selected CTP is presented along with an option to

add sample code to the design of both interacting agents through an “Add,” or “Remove,” button at the

top. By connecting the interaction and CTP to both interacting agents, no work is duplicated as the

student works through the design for each agent. For example, the collision CTP that was identified as

needed when the “dog,” is next to “home,” is added to both the “dog,” and “home,” agent sections

regardless of which agent is currently being designed.

CTP Sample Code
Figure 33C shows the sample code and everyday language descriptions for a CTP that has been

associated to an interaction. In this case, the collision CTP was added from the list in Figure 33B. Once a

CTP is added, an everyday language description of what occurs between the two agents is given (top of

www.manaraa.com

105

the gray box), and sample code is shown (in white) when the mouse cursor hovers over the description.

The descriptions and sample code are also shown in the respective agents’ section (see Figure 31C).

The sample code shown can be modified from simple pseudocode to exact sample code using

the arrow buttons at the top of the area (Figure 33C). The option to vary the sample code between

easier to access pseudocode and exact sample code was meant to allow students to see the relationship

between everyday language and academic programming language for that CTP.

A final feature of the CTP sample code area was the ability to swap which agents the

descriptions and sample code are associated with. For the example shown in Figure 33C, if the “home,”

agent was doing the hitting, and not the “dog,” agent, the description and code could be switched using

the “Swap Agents,” button located at the top of the area. This was a necessary feature due the

application not being able to differentiate between which set of code should be associated to which

agent by default.

Summary
The summary is accessed from the navigation menu on the far left. This section organizes all of

the information that the student has entered and presents it on one page. In study 1, this organization

was also supposed to have been present in the pencil-and-paper planning document. However, since the

planning document was never completed in study 1, the information that the summary provides was

never available for students. The students needed the organization scaffolded for them, and that is what

the summary does.

At the top of the summary page is the overall description of the project. Next, a list of the agents

is shown, along with their descriptions and any states that may have been identified. After the list of

agents, the interactions and CTPs that were identified are grouped by interaction and provide the

interaction description, agents involved, description of the CTP, and sample code. A student’s summary

www.manaraa.com

106

page is shown in Figure 34. It was intended that the students would print out the summary sheet and

use it as a guide to make their game in AgentCubes Online.

Figure 34. AgentDesign Planning Tool - Summary

The AgentDesign planning tool prompts students to go through a sequential design process. To

complete the process the students must complete prior tasks, such as identifying interactions before

being able to describe them and connect the interactions to CTPs. This sequential ordering of the

process, as well as making all information centrally available, were central design choices meant to

address the missed opportunities that students had in study 1 of not identifying interactions and

connecting those interactions to CTPs.

www.manaraa.com

107

This section discussed the AgentDesign planning tool, which juxtaposes students’ everyday

experiences and language with academic principles by relating the ideas of story to design and behavior

to CTPs. This tool served the embodiment of my conjectures for study 2 (see Table 11 and Figure 28) and

is consistent with my theoretical perspective discussed earlier.

Study Analysis
An analysis of the students’ practices focused on the students’ designs and resultant games. The

amount of alignment between each student’s ideas and designs, as well as between the designs and

resultant games was examined. The degree of alignment was then compared to the results of study 1 to

examine any changes in student use of design practices while using the AgentDesign planning tool as an

intervention.

Data Sources
The two data sources used were the information entered into the AgentDesign planning tool by

the student and the programming code and resultant games created using AgentCubes Online. The

information students entered into AgentDesign provided the students ideas and their design of the

game. Using AgentCubes Online, the students programming code and games could be analyzed and

compared to the students’ initial designs.

Student Designs
The AgentDesign planning tool was the primary space for students to design their games. As

explained earlier, the designs that students would create were to be used to assist the students in

creating their games using AgentCubes Online. Data collection from this source was primarily a printout

of the summary section of each student’s design. Recall that the summary section organized all of the

information that the student had previously entered. A sample of a student’s design summary that was

used for analysis was shown earlier in Figure 34.

AgentCubes Online Programming Code and Games
Students created their games using a web-based programming environment called AgentCubes

Online, which is explained in Appendix B. Each students’ programming code and playable games was

www.manaraa.com

108

accessed through the web-based interface available on AgentCubes Online. Analysis of the students’

programming code and games was completed using this interface.

Analysis Methodology
The purpose of analyzing the student designs was to test the hypothesis that the new

scaffolding tool, AgentDesign, assisted the students in enacting the design practices missed in study 1.

Two types of analysis were carried out on the data. (1) The students’ designs were analyzed for

completion, if/when they enacted design practices that were skipped by groups in study 1, and the

alignment of their CTP use with their descriptions of agent behavior. (2) The students’ programming

code and games were also compared to the designs to check for alignment between the two.

Student Designs
The analysis of the students’ designs examined which design practices from Table 12

(reproduced here) were met by the student.

Reproduction of Table 12. AgentDesign Planning Tool Design Practices
Design Topic Design Practice Details
1. Initial Idea Recording the initial game idea.
2. Agent Names Identifying and recording agent names from the project description.
3. Agent States Naming different representations an agent will have.
4. Agent Behavior Describing individual agent behavior.
5. Identifying Interactions Identifying which agents will interact.
6. Interaction Description Describing the interaction between two agents.
7. CTP Association Associating CTPs to an interaction that has been described.

A simple coding scheme was used to rate the completeness of each design practice for the

students’ design summaries. The coding scheme is shown in Table 14. Please note that the number of

sentences written for the Initial Idea was used to quantify the amount of writing each student did to

initially describe her/his game.

www.manaraa.com

109

Table 14. AgentDesign Design Practices Coding Scheme
Design Practice Description of Codes
1. Initial Idea # sentences - number of sentences used to describe the initial idea.

non-descriptive - the initial idea was not descriptive.
2. Agent Names yes - agents were identified.

no - agents were not identified.
3. Agent States default - no states were changed from default.

some - less than half of the agents’ states were changed from default.
most - more than half of the agents’ states were changed from default.
all - all of the agents’ states were changed from default.

4. Agent Behavior none - none of the agents had descriptions of their behavior.
some - less than half of the agents had descriptions of their behavior.
most - more than half of the agents had descriptions of their behavior.
all - all of the agents had descriptions of their behavior.

5. Identifying Interactions yes - interactions were identified.
no - interactions were not identified.

6. Interaction Description none - none of the interactions were given descriptions.
some - less than half of the interactions were given descriptions.
most - more than half of the interactions were given descriptions.
all - all of the interactions were given descriptions.

7. CTP Association yes - CTPs were associated to interactions.
no - CTPs were not associated to interactions.

After examining the completeness of each design, I refined my analysis by doing a count of the

categories shown in Table 15 for each. This process was carried out on paper printouts of the design

summaries taken from the AgentDesign planning tool. I decided whether or not a design was missing an

interaction or CTP based solely on the students’ project descriptions, descriptions of agent behavior, or

descriptions of interactions. My primary interest for pursuing this refined analysis was to see how often

the students were able to identify interactions between agents that they had described in their design,

and then how often they successfully associated the identified interactions to the correct CTPs.

For these counting categories I focused on three overall groups of counts: agents, interactions,

and CTPs. These three groups were chosen to be more closely examined because they required the

students to interact with AgentDesign based on what they had written. For example, agents would need

www.manaraa.com

110

to be identified after being described in the game description. Interactions would also need to be

identified after being described in an agent’s behavior, and CTPs would need to be identified from

behavior or interaction descriptions.

In Table 15, the term “correct,” (such as “interactions correct”) indicates an alignment between

a student’s descriptions, written in their own words, and the interactions that were identified by that

student using AgentDesign. Similarly, interactions or CTPs were counted as “needed,” if I believed a

student did not identify an interaction or use a CTP that was clearly described in the game description or

agent behavior.

Table 15. Counting Categories for Student Design Summaries
 Category Description

A
G

EN
TS

agents named in
description

The number of possible agents (nouns) named in the description.

agents named
outside description

The number of agents named outside of the description, such as in
other agent’s behavior descriptions.

identified agents not
named anywhere

The number of agents identified in AgentDesign, but NOT named in
the description or elsewhere.

identified agents
named anywhere

The number of agents identified from the description in AgentDesign.

non-identified
agents

The number of agents named in the description or elsewhere, but not
identified in AgentDesign.

IN
TE

RA
CT

IO
N

S

interactions correct The number of interactions correctly selected based on the description
or agent behavior.

interactions needed The number of interactions perceived by me as needed based on the
description or agent behavior.

interactions unclear The number of interactions that were selected but were not described
in either the description or agent behavior.

CT
PS

CTPs correct The number of CTPs correctly selected based on the description, agent
behavior, or interaction descriptions.
NOTE: In the event where the CTP used was “user control,” but the
USER agent was not selected, the CTP selection was counted as correct
if the agent being controlled was correctly identified. In these cases,
the interaction would have been coded as “unclear.”

CTPs not correct The number of CTPs incorrectly selected based on the description,
agent behavior, or interaction descriptions.

www.manaraa.com

111

CTPs needed The number of CTPs perceived by me as needed based on the
description, agent behavior, or interaction descriptions.

CTPs unclear The number of CTPs selected but not described in the description,
agent behavior, or interaction descriptions. For this case, it would be
unclear as to why the student chose the CTP.

Below is a sample of the raw coding that was carried out using these counting categories for the

interactions group. Notice that in the second row Amelia correctly identified six interactions in her

design but also needed to identify three other interactions based on what she wrote in her game

description or descriptions of behavior. She also did not identify any additional interactions that were

unclear based on what she wrote.

Table 16. Sample of Raw Interaction Counting Categories of Students’ Design Summaries
Name # interactions correct # interactions needed # interactions unclear

Alisha 2 0 0
Amelia 6 3 0
Carl** 0 unknown 0
Clint 5 0 0
Paul 2 1 1
Adam 5 2 0

The purpose of breaking down the identification of agents into five different counting categories

was to explore the effectiveness of the identification functionality in helping the students identify all of

their agents. The counts kept track of how many agents were named in the game description, how many

were named in the agent behavior descriptions, and how many named agents were identified using

AgentDesign. The count of agents named in the behavior descriptions was kept to examine how often

the students did not go back and modify their description as their design was developed. A count was

also kept of which agents were not identified at all, regardless of where they were named (description

or agent behavior), and which agents were not named anywhere but were still identified.

Three different categories of counting were used for the interactions of each design. The

intention of looking at these numbers was to understand how well the students carried out interaction

www.manaraa.com

112

identification. I wanted to see how often correct interactions were identified, how often they missed

identifying interactions and needed to add them, and how often they added interactions that were not

previously described. All descriptions of the project and agent behavior were used to judge if any

interactions were correct, needed, or unclear, which gave me an indication of how well AgentDesign

was working. In some cases, the number of needed interactions was not something I could make a

judgement about based on the lack of information elsewhere in the design.

The four categories used to organize CTP identification and use were intended to show how

often the students correctly associated descriptions of agent behavior or interactions to CTPs, how often

they incorrectly associated a CTP to an interaction, how often they did not associate a needed CTP to an

interaction, and how often it was unclear to me why a CTP was chosen. I relied only on the information

written by the student to make these judgements. A coded sample of a design summary is available in

Appendix A.

Inter-rater Reliability of Correctness of Designs Coding
Inter-rater reliability was carried out on the correctness coding scheme for a sample of five

student design summaries. Overall, the outside coder and I were mostly in agreement on the number

agents named and identified using the tool. However, there were a few exceptions in interpreting

whether some of the named objects by students should have been different depictions of the same

agent, or separate agents. In regards students correctly identifying and using interactions and CTPs, we

were in nearly full agreement for four of the five summaries. For the fifth summary, we found

disagreements due to our different interpretations of grouping named objects or keeping them as

separate agents. A major set of disagreements between my coding and that of the outside rater was on

the needed interactions and CTPs. The outside rater believed that there were many more needed

interactions and CTPs than I found. This was appeared to be due to the rater inferring what the student

may have intended, and not coding only from the students’ written descriptions.

www.manaraa.com

113

Transfer of Designs to Games
For each game, four categories were used to organize what was done in the games compared to

the designs. The first category was a comparison of the agents that were named in the design and the

agents that were created in AgentCubes Online, which gave an indication of how well the students

followed their initial design. Next, the number of agents that were created, but not named in the design,

was counted as a second category. The third category examined the alignment of CTP usage between

the design and the resultant game. The final category listed any of the CTPs that the student used,

regardless of whether or not that CTP was included in the design.

Findings
Student Designs

The intervention for study 2, AgentDesign, helped the students get further through the design

process than when they used the pencil-and-paper planning document in the first study (see Figure

35). From study 1 I found that the students reached the point of discussing an interaction only once, and

never got to the point of associating interactions to CTPs. With the introduction of the AgentDesign

planning tool, many students identified interactions and then associated those interactions to CTPs. Of

the 18 students that used AgentDesign to design a game, 11 of them reached the point of associating

CTPs to interactions.

Figure 35. Comparison of Design Practices for Studies 1 & 2

AgentDesign supported the students through the design process better than the pencil-and-

paper planning document. From the figure above, none of the groups in study 1 identified interactions,

www.manaraa.com

114

described the interactions, or associated those interactions to CTPs. In the second study, many of the

students were able to accomplish these design practices and create more complete designs.

Table 17 presents which design practices from Table 12 were completed within the AgentDesign

planning tool for all students that designed a game in the second study. I should also mention that Earl

created two different designs, and so he is in this table twice.

Table 17. Student Design Practices using AgentDesign

Name Initial Idea
Agent
Names

Agent
States

Agent
Behavior

Identified
Interactions

Interaction
Descriptions

CTP
Association

Alisha 2 sentences yes defaults some yes all yes

Alan 3 sentences yes defaults all yes all yes

Amelia 6 sentences yes defaults most yes all yes

Arthur 4 sentences yes defaults all yes none yes

William non-descriptive yes defaults all yes none yes

Gary 4 sentences yes defaults all yes none yes

Carl 9 sentences yes defaults none no none no

Clint 6 sentences yes defaults all yes all yes

Earl 4 sentences yes defaults all yes none no

Earl (2) 3 sentences yes defaults some no none no

Gill 3 sentences yes defaults all no none no

Ken non-descriptive yes all all yes some yes

Mary 4 sentences yes defaults none no none no

Paul 6 sentences yes most most yes all yes

Adam 6 sentences yes defaults most yes all yes

Sonya 3 sentences yes defaults none no none no

Sally 4 sentences yes defaults all no none no

Sarah 1 sentence no defaults none no none no

Jorge 5 sentences yes defaults some yes all yes

Looking closer at how robust the students’ designs were I used a counting coding scheme (Table

15) to examine how correct each student’s design was, and what they may have missed or used

incorrectly, based on the descriptions they wrote in AgentDesign. A table of these overall counts is

shown below.

www.manaraa.com

115

Table 18. Correctness of all Students' Designs using AgentDesign
Category Count
agents named in description 92
agents named outside description 5
identified agents not named anywhere 24
identified agents named anywhere 71
non-identified agents 26
interactions correct 30
interactions needed 34**
interactions unclear 15
CTPs correct 25**
CTPs not correct 0**
CTPs needed 35**
CTPs unclear 18**

** Value may be larger due to the lack of information provided in the students’ descriptions.

Identifying Agents
In both study 1 and 2, the students were able to identify and record most of the agents that they

wanted in their games during the design process. Looking at the data for study 2 I found that the

students identified most of the agents (71 of 92) they had named in their project descriptions,

descriptions of agent behavior, or descriptions of interactions. Some reasons for the missing

identifications may have been that the students made a mistake and did not identify them or they chose

to not identify those agents since they only played a story role or were not important for the game

functionality. Figure 36 shows the breakdown of the number of times that students identified agents

that were named (71), didn’t identify named agents (26), or identified agents that weren’t named in any

description (24). I should note that 16 of the 24 agents that were identified, but not named, were from

one student’s design in which he wrote very little in his game description or in the agent behavior

descriptions.

www.manaraa.com

116

Figure 36. Counts of Identified and Non-Identified Agents in AgentDesign Summaries for All Students

Figure 36 provides a representation of the number of identified agents that were named in

AgentDesign, identified agents that were not named, and agents that weren’t identified using

AgentDesign’s functionality but were named somewhere for all students. This figure shows that when

students named an agent in their game description or descriptions of agent behavior, most of the

students used the tool to identify those agents so that the design could be further refined. In study 1,

students were also able to identify agents, but the explicit link between the written descriptions and

identifying agents was not present in the pencil-and-paper planning document.

Counts for individual students are shown in Figure 37 and Table 19. It is important to note that

the number of identified agents that were not mentioned in the students’ designs was 24, but that

number is skewed by data from one student. William identified 16 agents without naming them

anywhere in his design, so for the other 17 students there were only 8 instances of an agent being

identified in AgentDesign that was not named somewhere in the descriptions.

www.manaraa.com

117

Figure 37. Students’ Identification of Agents using AgentDesign

Table 19 provides the same information as Figure 37, only in table form. Also shown in the

figure and table is that most of the students were able to identify at least some of the agents that were

described. Many of the students identified most of the agents they named in descriptions, and only

three students (William, Gary, and Sarah) did not identify any agents that were named in their designs.

Table 19. Individual Counts of the Students Identification of Agents using AgentDesign

Name

ID'd agents
named

ANYWHERE

ID'd but
not NAMED

non-ID'd
agents

Alisha 2 0 1
Alan 1 0 1
Amelia 8 0 1
Arthur 1 0 2
William 0 16 0
Gary 0 1 4
Carl 9 0 0
Clint 5 1 1
Earl 3 0 0
Earl (2) 5 0 1
Gill 2 2 1
Ken 4 0 1
Mary 10 0 0

www.manaraa.com

118

Paul 4 0 4
Adam 7 1 0
Sonya 2 0 1
Sally 6 1 3
Sarah 0 0 4
Jorge 2 2 1
Totals 71 24 26

Interactions

As shown in Figure 35, in study 1 only one group discussed interactions between agents, and no

groups recorded interactions between agents. In contrast, 12 of the 18 students using AgentDesign in

study 2 identified interactions, and 8 of those 12 described the interactions using the tool. Looking at

the individual students’ designs from AgentDesign showed that thirty of the interactions identified by

the students were correctly aligned with descriptions that the students wrote using AgentDesign.

However, from my analysis I also found that at least 34 interactions were needed, based on what the

students wrote in the project descriptions or descriptions of agent behavior, but were not identified. I

would also like to point out that the number of needed interactions may be higher, as indicated by the

(**) in Table 18 since I could not determine if the students’ descriptions were just incomplete or they

made an incorrect interaction identification.

Figure 38. Counts of Alignment between Interactions and Descriptions in AgentDesign Summaries

www.manaraa.com

119

Figure 38 provides a representation of the number of correctly identified interactions, needed

interactions, and unclear identified interactions based on the students’ descriptions. The figure shows

that 30 interactions were explicitly identified using AgentDesign among 18 students, compared to 0

identified interactions among the 4 groups (13 students) in study 1.

As just mentioned, some of the designs did not have enough information for me to clearly

assess what interactions were needed, so I could not provide a valid number for those designs. The

students that did not have alignment between their descriptions and identified interactions are

indicated by the (**) in Figure 39 and Table 20. On the other end of the spectrum, there were also 3

outlying students (Alisha, Clint, & Ken) who correctly identified all of the necessary interactions for their

design and I could find no reason that they would need other interactions, however Amelia and Ken did

select other interactions that were not described anywhere in their designs. The figure shows that a

subset of students were successful in correctly identifying some interactions, indicated by the arrows,

and most students identified interactions, although not all of them were correct.

Figure 39. Students' Interaction Correctness using AgentDesign

Table 20 provides the same information as Figure 39, only in table form.

www.manaraa.com

120

Table 20. Individual Counts of each Student’s Correct Identification of Interactions using AgentDesign
Name # interactions correct # interactions needed # interactions unclear
Alisha 2 0 0
Alan 0 2 1

Amelia 6 3 0
Arthur 0 3 1
William 1 6 6

Gary 0 3 1
Carl** 0 unknown 0
Clint 5 0 0
Earl 4 2 0

Earl (2) 0 5 0
Gill 0 2 4
Ken 4 0 1

Mary** 0 unknown 0
Paul 2 1 1

Adam 5 2 0
Sonya 0 2 0
Sally** 0 unknown 0
Sarah 0 3 0

Jorge** 1 unknown 0
Totals 30 34 15

CTPs

A goal of the Game activity was for the students to learn about CTPs, and in study 1 the students

never reached a point during the design process where they accessed the CTP information. Using

AgentDesign, 11 of the 18 students did access the CTP information and incorporated them into their

designs. Table 18 and the figure below show that 25 CTPs that the students used in their designs aligned

with interactions that the students had previously identified and described. However, I also found that

there were many CTPs (35) that the students did not associate to interactions, but would need for a

complete design.

www.manaraa.com

121

Figure 40. Counts of CTP Alignment with Descriptions in AgentDesign Summaries

Figure 40 provides the counts across all students of the correctly used CTPs, incorrectly used

CTPs, needed CTPs based on student descriptions, and the CTPs that were unclear to me why they were

used by the students. Similar to what was discussed for the use of the tool to identify interactions, the

students correctly associated 25 CTPs to interactions for their designs, as opposed to 0 CTPs being

correctly used in study 1.

Individual student use of CTPs is shown in Figure 41. Most of the students were able to correctly

incorporate CTPs into their designs using AgentDesign, however, all but one student needed additional

CTPs based on what they wrote in their descriptions. For some of the designs it was unclear as to what

CTPs would be needed, so I was unable to make a judgement on that value for certain students. These

students are indicated by the (**) in Figure 41. Also, two students, Gill and Paul, used CTPs in their

designs that I could not understand why they were chosen. These were the only two students that had

unclear CTP usage.

www.manaraa.com

122

Figure 41. Students' CTP Alignment with Interactions and Descriptions using AgentDesign

Table 21 provides the same information as Figure 41, only in table form. The figure shows that,

of the students that identified interactions, most of them correctly associated at least one CTP to an

interaction, and several students correctly used CTPs (indicated by the arrows).

Table 21. Individual Counts of the Students Correct Use of CTPs using AgentDesign
Name # CTPs correct # CTPs not correct #CTPs needed # CTPs unclear
Alisha 2 0 0 0
Alan 1 0 1 0

Amelia 6 0 5 0
Arthur 1 0 2 0
William 1 0 6 0

Gary 1 0 2 0
Carl 0 0 unknown 0
Clint 5 0 0 0
Earl 0 0 6 0

Earl (2) 0 0 5 0
Gill 1 0 1 1
Ken unknown unknown unknown unknown

Mary 0 0 unknown 0
Paul unknown unknown unknown lots

Adam 6 0 2 0
Sonya 0 0 2 0
Sally 0 0 unknown 0
Sarah 0 0 3 0

www.manaraa.com

123

Jorge 1 0 unknown 0
Totals 25 0 35 1

Transfer of Designs to Games

Table 22 shows that not all of the students that designed a game went on to create it. And those

students that did choose to create a game minimally used CTPs, even if they identified the CTPs using

AgentDesign and had access to sample code. The only CTP used by students was “User Control,” which

would have made an agent do something when a key is pressed. In many cases, the agents created in

the game did not correspond to the list of agents from the design. Only one student, Amelia, created all

of her identified agents from her design in the programming environment. Amelia was also one of the

few students to not create new agents that were not discussed in the design. Most other students

created other agents that were not the agents they had already identified using AgentDesign.

Table 22. Transfer of the Students’ Design to the Programming Environment

Name Game Name Game?
Agent

Match?
Other

Agents?
CTPs

Match? CTPs used
Alisha Pet shop YES 0/2 6 1/2 user control
Alan flappy bird YES 1/1 0 0/1 none
Amelia the crown rescue YES 8/8 0 1/6 user control
Arthur NO

William looney people YES 2/16 0 0/1 none
Gary NO

Carl broncobowling YES 4/9 5 0/0 user control
Clint underwaterbadguys YES 0/5 8 1/5 user control
Earl Mine Crab YES 0/3 4 0/0 none
Earl (2) NO

Gill NO

Ken awsomness YES 3/4 4 0/8 none
Mary NO

Paul you can run but you can't hide YES 3/4 5 1/17 user control
Adam zombie spider YES 1/8 1 0/6 none
Sonya NO

Sally girlcraft YES 4/7 4 0/0 none
Sarah NO

Jorge hrebrian123 YES 1/4 0 0/0 none

www.manaraa.com

124

CTP Use and Conflicting Concepts/Principles

Another interesting finding was a phenomenon where students’ use of CTPs were reasonable in

an everyday language sense, but not in a programming sense. The students that exhibited this

phenomenon seemed to choose CTPs based on how the CTP name fit the interaction descriptions and

did not consider if those CTPs were the best programmatic fit for their design. This is discussed further

in this section.

Within the data, there were 4 students that did not select the CTPs that best fit their

descriptions of agent behavior or interactions. However, I was not comfortable saying that their choices

were incorrect, although they would not have worked out well for the students when programming. In

the following sections 4 cases are discussed in which students did not select the “most correct,” CTP and

appeared to be guided by their own understandings of how the interactions they described would occur

in the real-world as well as their own understanding of the CTP terms.

Alisha
Alisha wanted to make a game called “Pet Store,” where the player had to go around and catch

escaped pets. Her game description is below.

“There's a pet store, and all the pets have escaped. The main character
has to run around and collect all the pets in 10 minutes.”

The interaction that stands out as confusing a real-world action with the CTP term is how the

main character carries out the act of catching the pets. She described this interaction as “[main

character] will catch the pets,” and the CTP she chose was the transport CTP. Transport was defined in

AgentDesign as, “the transport pattern occurs when one agent (AGENT-X) carries another agent

(AGENT-Y). Transport will also incorporate a move, so it will move and carry whatever is above it on the

worksheet.” The more correct CTP she should have used was absorb, which would have made each pet

disappear as her main character got next to one. Using the transport CTP, her game would have had all

www.manaraa.com

125

of the caught pets being stacked on top of her main character agent and moving with that agent. Her

choice just doesn’t make sense from a programming perspective. However, from a real-world

perspective, when a person catches an animal from the pet store of course they are going to carry it

back, or transport it.

Alisha’s use of the transport CTP was not correct in my view. But I also don’t think it was wrong.

Her own experiences and understanding of the act of catching pets and the term transport likely

influenced her choice and probably made complete sense to her.

Amelia
Amelia’s game focused on a princess needing to get to her crown. The description of her game, as she
wrote it, is below.

“princess she is looking for her crown. As she is looking for her crown she
is collecting flowers andbracelets. you win when you find the crown.You
lose when the witch find you.If you find the fairy she will help you get to
the crown.she need to pass through the dark forest to get to her crown in
thetallest tower.”

For her game, Amelia had written an interaction description between her princess and witch

agents as, “they fight.” From that description it is unclear what exactly she wanted to happen in the

game and what CTP would have been appropriate. The CTP that she chose to associate with that

interaction was the push CTP. The push CTP is generally used when one agent needs to move a different,

stationary, agent and was defined in AgentDesign as, “this CTP occurs when an agent wants to be able to

move around certain other agents through the act of pushing them.” Because the push CTP did not

seem to fit, I initially marked this association as incorrect, but upon going through the data again I

realized that “pushing,” is a typical act of fighting. It appeared as though Amelia was using her

understanding of, and experiences with, the concept of fighting to influence her decision of which CTP

to use. Pushing does occur in fighting, and from the list of CTPs, it would make the most sense.

www.manaraa.com

126

I do not think the push CTP would have worked for Amelia for her game. The more correct CTP

would have been collision, but with a name (push) that fits a real-world activity like fighting I do

understand why she would have chosen it.

Ken
Ken’s game was an outlier because all he did was name his four main agents in the description

area. So it was unclear at first what he wanted his game to be. His game description is shown below.

“savior,civilian,weapons,giant monsters.”

While Ken didn’t provide much information in his game description for me to use for an analysis

of correctness, it was clear that Ken wanted the savior to use the weapons to save the civilians from the

monsters. The interaction, and corresponding CTP use, that was interesting was between the savior and

the weapons. Using AgentDesign, he chose three CTPs to be associated with this interaction that would

conflict if they were all programmed into a game, and yet none of them are necessarily wrong. The three

CTPs he chose were transport, absorb, and push. In the real-world sense fighting a monster with a

weapon would mean that the weapon would be transported, because it would have to be carried. In

another sense, I could also think of the weapon as being pushed as I moved it around. And finally, in a

game sense, I could pick up the weapon and it would disappear, this is a common phenomenon in most

games. For these three CTPs, only one could work at a time within a game. An agent can’t be

transported and be pushed and be absorbed, and the same is true for the other two CTPs. My hunch is

that Ken chose all of the CTPs that worked for his explanation without taking into account the context

(game, and not real-life), or how the three would operate together. His understanding of the terms

transport, absorb, and push, and the associated activity with the three, were in conflict with how they

are defined as CTPs and function within a game.

Paul
Paul’s game focused on a main character, Mark, teaming up with a group called the Blackeyes to

fight off assassins. His game description is below.

www.manaraa.com

127

“Everything is quite in the city, New York City, but then an army attacks.
everyone starts running. So the army tries to attack the people, but the
people try to fight for their lives. There are other people in the city, the
Blackeyes, minding their own business, but then they join Mark and fight
the Assassins. At least 2 people need to survive on one side in order to
win. To lose, the whole team dies.”

Looking at his design there were many interesting uses of CTPs. Like Ken, Paul seemed to

associate interactions between agents to all of the CTPs that would work in both a real-world and game

context. The interesting CTPs that he chose to associate with the interaction between his primary agent,

Mark, and the agents chasing Mark, the assassins, included push, tracking, pull, and perceive-act. He

described this interaction as, “mark will run away from the Assassins.Mark will attack the Assassins at

the same time too.” Like Amelia, I suspect that he used the push CTP to represent fighting, especially

since he did not use the collision CTP for this interaction. The tracking and pull CTPs could represent the

assassins chasing mark, where tracking is a real-world concept, and pull is more of a game concept. The

most surprising CTP used was the perceive-act CTP, which was defined in AgentDesign as, “this CTP uses

information that an agent knows about itself and the agents around it to make a decision on what it

should do. It basically looks at itself or around it, and depending on the state (depiction) or values that it

finds, the agent will change itself or stay the same.” The term “perceive-act,” fit his story, but the CTP

would not have been as useful as other CTPs to create functionality of the game he wanted.

Like the other students, Paul chose CTPs that would have had a conflicted meanings from what

he knew of those terms and how they were defined in AgentDesign. I can completely understand his use

of push for fighting, and perceive-act for how his agent would behave while being chased.

Unfortunately, this conflict made his design more complicated and less useful than it could have been.

From the data there was an observable improvement of students enacting the intended design

practices when using the AgentDesign planning tool, particularly for identifying interactions and using

CTPs. In study 1, the students did not record any interactions and never accessed CTPs. In the follow-up

www.manaraa.com

128

study, the students were able to successfully identify interactions, describe those interactions, and then

correctly associate those interactions to CTPs. In most of the cases, the students did not correctly

incorporate all of the interactions or CTPs that they would have needed (based on the descriptions that

each student wrote), but given the results of study 1 any use of CTPs is a step forward. Possible

improvements for the Game activity process and AgentDesign planning tool are discussed in the

following section.

Study 2 Closing
There is still a lot of work that could be done in both exploring how best to expose students to

design, but also how to get elementary students involved in computer science. The findings from study 2

show that students still had difficulty creating the games that they initially wanted to make. However,

unlike study 1, the students in study 2 were able to access the CS principles and enact design practices

that were skipped over in study 1. The following discussion section comments on the successes and

issues that students had and how I may move forward with this work and improve AgentDesign or the

activity.

www.manaraa.com

129

Discussion

There are four points of discussion that I would like to pursue in this section.

1. AgentDesign supported the students through the design process better than the pencil-and-

paper planning document used in study 1.

2. For both studies, neither approach fully supported the students’ transition from designing a

game to creating it in a programming environment.

3. The scaffolding tool I have developed so far can be improved upon for a setting such as EPM,

but also for everyday classroom use.

4. Some of the issues I encountered stemmed from the informal nature of the learning

environment, so it is likely that what I was hoping to accomplish simply isn’t possible without

making the environment more formal.

5. More research needs to be done in CS education to develop useful approaches to teaching

elementary students the discipline, as well as preparing elementary teachers to take part in the

process.

Transfer from Design to Programming Environment
Unfortunately, neither study observed students successfully create their designs in a

programming environment. The students in study 1 needed a lot of support from me to create their

games after going through the design process, primarily due the fact that they did not complete the

design process. The reproduction of Figure 21, shown here, emphasizes the focus of the intervention of

study 2 being on supporting students in identifying agent behavior, interactions and CTPs.

www.manaraa.com

130

Reproduction of Figure 21. Areas needing improved scaffolding for the Game activity

In study 2 the students didn’t make the games they designed, if they made a game at all. Figure

42 highlights the area of the game activity that will be the focus of future work.

Figure 42. Areas needing improved scaffolding after study 2

In the following sections I provide some explanations as to why I think students were not

successful in creating their games, or even starting to make a game to begin with.

One possibility that could have made moving from the design to creating a game problematic

for students was in the support mediating the transfer. The design summary may not have been

structured in a way that was helpful to the students to move from the AgentDesign planning tool to the

programming environment (AgentCubes Online). There could have been too much, or even too little,

information available to the students when they moved to the programming environment. Another

possibility is that the programming environment, AgentCubes Online, was not as easy to access for

www.manaraa.com

131

elementary students as I had expected. The short video I had provided on iRemix as an introduction may

not have been enough, and the students may not have been comfortable asking for help when needed,

or even understood that using AgentCubes Online was the next step.

Another explanation is that the students got bored with the activity or were distracted by the

games available on the Scalable Game Design Arcade or elsewhere at EPM. I was positioned next to the

Minecraft station, and many of the students that participated in the Game activity went back and forth

between the two stations. Similarly, many students got distracted playing games in the Scalable Game

Design Arcade, and so never moved on to creating their own games.

A final explanation is that the informal learning setting established at EPM, especially during

study 2, was simply too free for the students to successfully complete the Game activity. Informal

learning settings can be great in many ways, for example, I was able to leverage the students’ ideas to

have them design and create their own games. However, by their nature, informal learning settings are

difficult to implement certain types of structured support. For study 2, students were not only learning

about design, and how to work with the AgentDesign planning tool, but were also learning how to

program. It is apparent that some type of support was missing, but it is worth mentioning that the

needed support may not have been feasibly implemented in EPM at that time.

Unlike study 1, the students in study 2 did not seem as invested in making their games work and

just stopped at a certain point. Some stopped after finishing the design, some after making some agents,

and some after getting an agent to move. In a follow-up study I will need to more closely examine the

reasons for students abandoning the game-making process.

Implications for CS and Informal Learning
The benefits that were being afforded through the informal learning setup of EPM also had a

cost in that there was simply no easy way to step students through an introduction to AgentCubes

Online without making the activity much more like “school,” and therefore, formal. Would students

www.manaraa.com

132

have been more successful in making a game, and still felt ownership and pride, if someone made them

finish it? In study 1, the undergraduates were more likely to play the role of someone making the

students finish, and they did finish many games in that study. But through the undergraduates playing

that role a hierarchy was created that was counter to the setup that EPM intended. I do think that the

students needed more support, but they also needed a type of structure that does not fit an informal

learning environment.

A purpose of this study was to see if elementary students could design and make a game on

their own using AgentDesign and AgentCubes, and I am not as sure as I used to be about that possibility.

There were just too many new things for the students to learn, and too may institutionalized

distractions in the learning environment, such as moving from station to station on a whim, for them to

really be successful. And for the students to learn these new things, like working with AgentCubes, the

activity would likely need to contain fewer distractions, be more structured, and provide limitations &

scaffolding necessary to enhance the students’ success. It appears that in attempts to empower the

students, the informal environment of EPM, as far as CS learning is concerned, does the opposite.

Framing this shortfall in terms of Vygotsky’s zone of proximal development (ZPD), the activity certainly

met the students at a place that they could participate, by using their own ideas to design a game, but

the informal structure didn’t encourage the students to reach the upper limit of the ZPD even though

there were many supports in places (CS experts, videos, etc.). The amount of support that the students

needed didn’t fit an informal learning environment paradigm. In order to support the process and

expectation that students create a game in AgentCubes online, I feel that much more structure needed

to have been in place. This structure would have removed aspects of the informal learning environment

that EPM sought to establish during study 2.

These two studies demonstrate the potential value of structure toward student empowerment

and expectations and the trade-offs that occur for learning environments that may be more or less

www.manaraa.com

133

formal. The informal nature of EPM encouraged the students to play, and have a low entry point for

accessing the activity, but it also allowed for free movement to another activity if making a game got to

hard or was not interesting anymore, or simply if another activity looked more fun (like playing

minecraft). Making the activity more structured in future studies may take away from the informal

nature of the current environment at EPM, but they may be necessary for supporting elementary

students learning of CS, design, and game structure.

Implications for the “Make Your Own Game” Activity
As I mentioned earlier, the students did not successfully create their games from the designs

that they developed in study 2. A possible solution to this issue would be to expedite or simplify the

process of the “Make Your Own Game” activity. Essentially, the students need to get to the fun stuff and

create their final product quicker. Some options to accomplish this goal include:

 shortening the design process, or reduce the number of steps,

 making the creation/programming process simpler and/or shorter,

 building in more opportunities to see the relationship between the design and programming.

Limiting the number agents allowed within the design will force students to create smaller

games. This, in turn, will get the students through the design process quicker, as well as make the

programming process less complex. While this option does shorten the design time by adjusting the

activity, another possibility is to examine how AgentDesign may be modified to make the design process

more compact. Currently, students start from a project description, name agents, describe agent

behavior, identify interactions, describe interactions, and then link interactions to CTPs. It could be

possible to combine some of these steps within the web tool, and that may alter how much time

students need to complete the design process and start creating their game. A third option is to only

allow students to design for one aspect of a game. Essentially, the students’ would “modify”, as in “use-

www.manaraa.com

134

modify-create” (Lee et al., 2011), a part of a previously developed game design and then create the

entire game using information already entered in the design.

Outside of modifying the design aspect of the activity, there are other possibilities to make the

design to programming process simpler or more streamlined. One possibility is to have AgentDesign

generate a project file for students to download and use as a template within the programming

environment. For example, AgentDesign could create a programming project file that would include all

of the agents created within the design (but with only a default representation) as well each agents’

behavior descriptions written in the comment sections. Providing students this opportunity would allow

them to immediately start programming each agent’s behavior. This option also would allow the

students to see the connection between components of their design and the game they would be

creating.

A final option is to address the disconnectedness between the design and programming

environment. In the current activity, there is a physical disconnect between the design and the

programming environment because the design either needs to be printed out or be on a separate

window. Directly inserting components of the students’ designs into a project file is one option for

improving the understanding of the relationship between the design process and the creation process.

However, another option is to set up AgentDesign in a way that AgentCubes Online could be shown as a

panel within the web tool. This way, students would be able to go through step-by-step and see their

design and resultant code side-by-side. Allowing students to observe the relationship between the

design and the programming code will not only help build understanding of CTPs and design, but will

also make the transition between the two much easier.

There are many options for expediting and simplifying the transition from students designing to

creating their games in a programming environment. All of these will be taken into account in future

iterations of the study.

www.manaraa.com

135

Implications for Programming Environments
The two studies carried out for this dissertation utilized two different programming

environments, which students used to create their games. These were AgentSheets, a 2D environment,

and AgentCubes Online, a 3D environment. In regards to the students’ ability to work within a 2D or 3D

environment, I don’t think there were any issues or advantages. In some sense the students may have

felt that the 3D environment was cooler, but they were also very creative when working within the 2D

environment in study 1.

The differences in students’ abilities to work with either programming environment stemmed

from the interfaces of each environment, and not so much the dimensional affordances or restrictions.

For example, AgentSheets had an interface where almost all of the windows of the programming

environment could be moved around or minimized. In contrast, AgentCubes Online had almost

everything visible at all times. With windows and important components of the environment able to be

minimized, it was very easy for students to lose windows and get lost using AgentSheets. However, the

interface in AgentCubes Online always showing most aspects of the programming environment created

a very full screen with lots of options. This could have been overwhelming to the students. It will be

important to consider how well students can use the interface, and not just understanding the

programming or dimensional affordances, for future iterations of this study.

Implications for the Design Scaffolding Tool
In study 1, the students never accessed the CS principles of interactions and CTPs and did not

complete the design process. In the follow-up study, which used a revised scaffolding tool called

AgentDesign, many of students were able to access CS principles and incorporate interactions and CTPs

into their designs.

In many ways AgentDesign appears to have assisted the students in completing the design

process, but not the game-making process. This section discusses aspects of AgentDesign that went well

for the second study, ways it could be improved, and how it may be used in a classroom setting.

www.manaraa.com

136

Successes
A success of the AgentDesign planning tool was that the students’ design practices were more

closely aligned with the intentions of the activity than the practices they exhibited when using the

pencil-and-paper planning document. Students in study 1 were engaged in the activity, but almost never

reached a point where they would identify interactions during the design process, and none of the

groups in study 1 made a connection between agent behavior and CTPs. In study 2, many of the

students identified interactions and also connected their own descriptions of agent behavior and

interactions to CTPs. Connecting the student ideas to CTPs was an important step for the students to

reach because it assists student development of CS principles. Two influencing factors for why the

students got further in the design process may have been that the guided structure that AgentDesign

provided was designed to lead students completely through the process and that the students were not

encouraged to do any drawing within the tool.

From study 1 I learned that assisting students through this process would require that the tool

be highly structured, but also that any new knowledge should be relatable to the students’ original

ideas. Guided by theory on conceptual development and formative assessment I developed a tool that

relied on student ideas and experiences to contextualize CTPs and video game structure. Utilizing

prompts between refinement stages is likely what got so many more students through the design phase

of the activity in study 2 than in study 1.

Also from study 1 I learned that having a primary activity of the game design process be focused

on drawing can distract the students from the overall goal. In study 1 the students were encouraged to

draw out their agents and game boards within the pencil-and-paper planning document, and it was

observed that these students spent a majority of their time focusing on the look of their games and not

on what their agents would do in the game. By removing drawing as a requirement of the scaffolding

www.manaraa.com

137

tool for study 2, the students actually reached the point of, and carried out, identifying interactions and

linking those interactions to CTPs in the scaffolding tool.

Missed Opportunities
A continual missed opportunity that was present in both studies was providing clear, age

appropriate language for the students. In study 1 the language was too open and did not provide

enough clear direction for the students. In study 2, the language used in AgentDesign was likely at too

high of a level for elementary students. In both cases, better clarity could have been provided to the

students as they worked through the activity.

An example of where this occurred in study 2 is the prompt for directing students to identify

different shapes for their agents. The intention of the prompt was to get students to decide if they

would need to have their agent look differently during the game and read, “If this agent will have

different shapes during the game play, please name them. A default shape is already available here. You

may also want to sketch them out so you have an idea of what you will want it to look like. Don't take

too much time with sketching though.” Only two students actually named alternate shapes (Ken & Paul,

Table 17), and so it is likely that the students had no idea what this prompt was asking them to do.

Another example of unclear language is the fact that students chose CTPs that fit their planned

out behavior from an everyday language perspective, but not from a programming language

perspective, such as using the CTP “push,” to enact fighting within a game. The description of the

“push,” CTP must have been unclear for the students (Paul & Amelia) to have used it to represent

fighting between two agents. Another possibility is that the description wasn’t necessarily unclear, but

the students may have felt that they just didn’t need to read the descriptions or that the description was

too long for them to care about reading. For whatever reason, something about the CTP descriptions

was just not working for some of the students and warrants some further research.

www.manaraa.com

138

A third missed opportunity was providing a more organized, or straightforward, way for

students to use their designs to create their games. The intention of the study 2 activity was for students

to use the summary page from AgentDesign to guide them in creating their games, and the summary

page is very text heavy and presents most of the information all at once. In retrospect, it may have been

better to provide the needed design information in a way that students could step through on an agent-

by-agent basis, as they would have needed to do in the programming environment. It is possible that

the students with the most detailed plans simply got overwhelmed by the length of and amount of

information provided in their summary pages.

Design Implications: Improving the Student Experience
Given that there were, and always will be, things that the scaffolding tool could have done

better, in this section I will outline my planned changes for the AgentDesign planning tool. First, I would

like to make the relationships between the components of a student’s design more apparent on the

summary page. Second, I would like to improve the wording that is used for the prompts so that they

are clear and concise for an elementary student. Third, I would like to incorporate video and other

graphics to improve the descriptions of individual CTPs.

As I mentioned earlier, AgentDesign was very text heavy and sequential, which was a purposeful

design choice. A consequence of that choice may have been that the design summary was difficult for

the students to grasp, and the relationships between agents may have been lost when the students used

only the summary page to assist them with making their game. Future iterations of AgentDesign should

revise how the whole of the design is presented to students on the summary page. In its current form,

interactions between two agents and the corresponding CTPs are displayed in the summary page

separate from any individual agent’s description of behavior (see Figure 34). The intention of keeping all

the CTP information in one place was to isolate the section of the design that offered sample code for

the students, but I fear that it may have isolated the code to a point that it was no longer easily

www.manaraa.com

139

understood in relation to the big picture that the student outlined in the game description and

individual agents’ descriptions of behavior.

Improved wording in prompts will also assist the students in better understanding what they

need to do in the design process. The prompts I used likely made more sense to the undergraduates and

CS Experts that were around than to the students. I would like to work with elementary literacy experts

and elementary students to improve the language use of AgentDesign for any future use of the tool.

An alternative to using written language is to incorporate more graphics into AgentDesign, such

as was done by Basawapatna (2012) in his Simulation Creation Toolkit. Since AgentDesign is web-based,

it is possible to incorporate images, GIFs, or video into the explanatory aspects of the tool. I believe that

had I provided multiple sources, and types, of information into the CTP descriptions I would not have

seen students selecting “push,” to represent fighting between two agents within a design.

I believe that modifying the way that prompts, explanations, and design summaries were

communicated within AgentDesign would have improved the students’ ability to successfully design

their games. All of these proposed modifications are attainable given the web-based platform that

AgentSheets was created in.

Design Implications: Modifications for Classroom Use
In addition to the modifications discussed above, an important consideration for future

iterations of AgentDesign is how it may need to be altered to be best used in classrooms. A simple

requirement would be that I would need to build in teacher accounts and the functionality to create and

modify student accounts. But upon going through my own analysis of student data, there will also need

to be a robust set of analysis tools added.

The first analysis tool will need to be a counting of agents, agent behavior described,

interactions, and CTPs that the students have utilized within their design. Teachers may ask students to

design their own games, or they may ask them to use a standard game description. Regardless of the

www.manaraa.com

140

choice, knowing which students are not identifying interactions and incorporating CTPs can be a

powerful tool for classroom teachers. If a student has not identified any interactions, that can be an

indicator that the student may need help in understanding game design. Or if a student has not

incorporated any CTPs into her design, she may need some assistance in understanding what CTPs, and

algorithms, are used for in computer science.

A second analysis tool will need to allow teachers to move past the quantitative aspect of

student designs and allow them to easily view the qualitative aspects. This may involve allowing each

teacher to examine the design summaries for each student, but could also go as far as incorporating an

automated assessment of needed agents and interactions based on language use. Giving teachers the

opportunity to give students feedback about what agents they have identified or what CTPs they have

chosen to use without having to look closely at every design can be extremely powerful within any

classroom.

A final tool that will be useful for teachers in a classroom setting is the ability to compare a

game design to the resultant programming for individual students, such as was done in Table 22. Many

agent-based game repository sites, such as the Scalable Game Design Arcade or Scratch may be open to

allowing a third party site like AgentDesign to do a comparison of designs to games since design is not a

feature that is currently incorporated in their repositories.

Providing access to tools that analyze their students’ designs, and possibly games, that are

similar to what I have done for the analysis of these studies will help teachers to better incorporate

design into their CS activities. The modifications I have suggested in this section may not be necessarily

easy to carry out, but I do believe they will assist in the learning of core CS disciplinary practices in

everyday classrooms.

www.manaraa.com

141

Preparing Computer Science Elementary Teachers
I believe that elementary students are capable of working through an authentic CS activity of

designing and creating their own games. From the data, I showed that the students were engaged in

designing their own games, but seemed to have lost interest during the transition to creating the games.

It may be that the setting and activity were too informal for the students to really be successful. If a

more formal activity is to be used, one that is more like school, it is important to consider how to

prepare teachers in formal school settings to be able to carry out an activity like this. So I would like to

end this section by discussing how elementary teachers can be prepared to teach computer science in

everyday classrooms.

Preparing elementary teachers to incorporate CS into their future classrooms will need to be

carried out in three ways. The first is that teachers will need to develop an understanding of what it is

computer scientists DO. The second is that future teachers will need to develop their own content

knowledge of the CS discipline. The third is that future teachers will need to develop pedagogical

content knowledge of the CS discipline so that they can teach students in an appropriate manner.

In many cases, future elementary teachers do not have as much experience or training as

computer scientists. Additionally, there are stereotypes and stigmas for the types of people that become

computer scientists. It is important that future teachers develop a realistic understanding of what

computer scientists do, and that any student is capable of learning CS, so that they can then start to

believe that their students can do those things as well.

A significant disadvantage that the CS discipline has when asking teachers to incorporate CS into

their classrooms is that the teachers generally have no prior history with the discipline. Unlike other

STEM disciplines like math or science, any future elementary teacher will likely not have experienced CS

at any point in their formal education career. Since future teachers will not have this experience with

the CS discipline, they must be provided with experiences to develop the needed knowledge.

www.manaraa.com

142

The most challenging aspect of preparing future elementary teachers to teach CS in their

classrooms is to help them develop pedagogical content knowledge. This is challenging because I don’t

believe that CS education has reached a point to have a cohesive understanding of what the best

practices of teaching CS in an elementary classroom are. Some organizations will suggest that

elementary students should not work with computers yet and only learn about logic and thinking

through problems (http://csunplugged.org/), but others, including myself, would disagree that

elementary students can’t handle more authentic experiences of CS. Although I do concede that I may

have asked students to do too much for the studies presented here. More research needs to be pursued

that can contribute to answering the question of what are the best ways of exposing elementary

students to learning CS.

www.manaraa.com

143

References

ACM Education Policy Committee. (2014). Rebooting the Pathway to Success Preparing Students for
Computing Workforce Needs in the United States.

Ames, C. (1992). Classrooms: Goals, Structures, and Student Motivation. Journal of Educational
Psychology, 84(3), 261–271.

Aspray, W., & Bernat, A. (2000). Recruitment and Retention of Underrepresented Minority Graduate
Students in Computer Science. Washington, DC, USA.

Atman, C. J., Adams, R. S., Cardella, M. E., Turns, J., Mosborg, S., & Saleem, J. (2007). Engineering Design
Processes: A Comparison of Students and Expert Practitioners. Journal of Engineering Education,
96(4), 359–379.

Basawapatna, A. (2012). Creating Science Simulations Through Computational Thinking Patterns.

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S. (2011). Recognizing
Computational Thinking Patterns. In SIGCSE ’11 (pp. 245–250). New York, NY, USA: ACM Press.
http://doi.org/10.1145/1953163.1953241

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010). Using scalable game design to teach computer
science from middle school to graduate school. Proceedings of the Fifteenth Annual Conference on
Innovation and Technology in Computer Science Education - ITiCSE ’10, 224.
http://doi.org/10.1145/1822090.1822154

Binkerd, C. L., & Moore, M. D. (2002). Women/Minorities in Computer Science: Where Are They? No
Attention No Retention. Journal of Computing Sciences in Colleges, 17(5), 8–12.

Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment,
Evaluation and Accountability, 21(1), 5–31. http://doi.org/10.1007/s11092-008-9068-5

Brown, A. L. (1992). Design Experiments: Theoretical and Methodological Challenges in Creating
Complex Interventions in Classroom Settings. Journal of the Learning Sciences, 2(2), 141–178.
http://doi.org/10.1207/s15327809jls0202_2

Cole, M., & Engestrom, Y. (2007). Cultural-Historical Approaches to Designing for Development. In J.
Valsiner & A. Rosa (Eds.), The Cambridge Handbook of Sociocultural Psychology (pp. 484–507). New
York, NY, US: Cambridge University Press. http://doi.org/10.1017/CBO9780511611162.026

College Board. (2014). AP Computer Science Principles Curriculum Framework. New York, NY. Retrieved
from https://advancesinap.collegeboard.org/stem/computer-science-principles

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design Research: Theoretical and Methodological Issues.
The Journal of the Learning Sciences, 13(1), 15–42.

Committee on Conceptual Framework for the New K-12 Science Education Standards, & National
Research Council. (2011). A Framework for K-12 Science Education: Practices , Crosscutting
Concepts, and Core Ideas. Washington, DC, USA.

Cross, N. (2004). Expertise in Design: an overview. Design Studies, 25(5), 427–441.

www.manaraa.com

144

http://doi.org/10.1016/j.destud.2004.06.002

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be
used to measure understanding of computer science concepts? Computers & Education, 58(1),
240–249. http://doi.org/10.1016/j.compedu.2011.08.006

Doorman, L. M., & Gravemeijer, K. P. E. (2009). Emergent modeling: discrete graphs to support the
understanding of change and velocity. Mathematics Education, 41, 199–211.
http://doi.org/10.1007/s11858-008-0130-z

Dweck, C. S. (1986). Motivational Processes Affecting Learning. American Psychologist, 41(10), 1040–
1048.

Dwyer, H., Hill, C., Carpenter, S., Harlow, D., & Franklin, D. (2014). Identifying Elementary Students’ Pre-
Instructional Ability to Develop Algorithms and Step-By-Step Instructions. In Proceedings of the
45th ACM technical symposium on Computer science education - SIGCSE ’14 (pp. 511–516). New
York, New York, USA: ACM Press. http://doi.org/10.1145/2538862.2538905

Fischer, G., & Scharff, E. (2000). Meta-Design: Design for Designers. In DIS ’00 (pp. 396–405). Brooklyn,
NY: ACM.

Fletcher, G. H. L., & Lu, J. J. (2009). Education Human Computing Skills: Rethinking the K-12 Experience.
Communications of the ACM, 52(2), 23–25. http://doi.org/10.1145/1461928.1461938

Frenkel, K. A. (1990). Women & Computing. Communications of the ACM, 33(11), 34–46.

Goldberg, D. S., Grunwald, D., Lewis, C., Feld, J. A., & Hug, S. (2012). Engaging Computer Science in
Traditional Education : The ECSITE Project. In ITiCSE’ 12 (pp. 351–356). Haifa, Israel: ACM.

Ho, C.-H. (2001). Some phenomena of problem decomposition strategy for design thinking: differences
between novices and experts. Design Studies, 22(1), 27–45.

Kafai, Y. B. (1996). Learning Design by Making Games Children’s Development of Design Strategies in the
Creation of a Complex Computational Artifact. In Y. B. Kafai & M. Resnick (Eds.), Constructionism in
Practice: Designing, Thinking, and Learning in A Digital World (pp. 71–96). Mahwah, NJ: Routledge.

Kelleher, C., & Pausch, R. (2006). Lessons Learned from Designing a Programming System to Support
Middle School Girls Creating Animated Stories. Visual Languages and Human-Centric Computing
(VL/HCC’06), 165–172. http://doi.org/10.1109/VLHCC.2006.30

LeCompte, M. D., & Schensul, J. J. (1999). Analyzing & Intepreting Ethnographic Data. AltaMira Press.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., … Werner, L. (2011). Computational
Thinking for Youth in Practice. ACM Inroads, 2(1), 32–37.

Louca, L. (2005). The Syntax or the Story Behind it? A Usability Study of Student Work With Computer-
Based Programming Environments in Elementary Science. In CHI 2005 (pp. 849–858). Portland, OR.

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking About Computational Thinking. In SIGCSE ’09 (pp. 260–264).
Chattanooga, TN, USA.

www.manaraa.com

145

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming
Language and Environment. ACM Transactions on Computing Education, 10(4).
http://doi.org/10.1145/1868358.1868363.http

McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting Students’ Construction of
Scientific Explanations by Fading Scaffolds in Instructional Materials. Journal of the Learning
Sciences, 15(2), 153–191.

Montanelli Jr, R. G., & Mamrak, S. A. (1976). The Status of Women and Minorities in Academic Computer
Science. Communications of the ACM, 19(10), 578–581.

Nasir, N. S., Hand, V., & Taylor, E. V. (2008). Culture and Mathematics in School: Boundaries Between
“Cultural” and “Domain” Knowledge in the Mathematics Classroom and Beyond. Review of
Research in Education, 32, 187–240. http://doi.org/10.3102/0091732X07308962

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC,
USA: The National Academies Press.

Otero, V. K., & Nathan, M. J. (2008). Preservice Elementary Teachers’ Views of Their Students' Prior
Knowledge of Science. Journal of Research in Science Teaching, 45, 497–523.
http://doi.org/10.1002/tea

Pane, J. F., Ratanamahatana, C. “Ann,” & Myers, B. A. (2001). Studying the language and structure in
non-programmers’ solutions to programming problems. International Journal of Human-Computer
Studies, 54, 237–264. http://doi.org/10.1006/ijhc.2000.0410

Papert, S. (1980). Mindstorms. New York, New York, USA: Basic Books.

Parnafes, O., & DiSessa, A. (2004). Relations Between Types of Reasoning and Computational
Representations. International Journal of Computers for Mathematical Learning, 9(3), 251–280.
http://doi.org/10.1007/s10758-004-3794-7

Pea, R. D., Kurland, D. M., & Hawkins, J. (1985). LOGO and the Development of Thinking Skills. In M.
Chen & W. Paisley (Eds.), Children and Microcomputers: Research on the Newest Medium (pp. 193–
212). Sage.

Pearl, A., Pollack, M. E., Riskin, E., Thomas, B., Wolf, E., & Wu, A. (1990). Becoming A Computer Scientist:
A Report by the ACM Committee on The Status of Women in Computing Science. Communications
of the ACM, 33(11), 47–57.

Repenning, A., Webb, D. C., Brand, C., Gluck, F., Grover, R., Miller, S., … Song, M. (2014). Beyond
Minecraft Facilitating Computational Thinking through Modeling and Programming in 3D. IEEE
Computer Graphics and Applications, 34(May-June 2014), 68–71.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable Game Design and the Development of a
Checklist for Getting Computational Thinking into Public Schools. In SIGCSE ’10 (pp. 265–269). New
York, NY, USA: ACM Press. http://doi.org/10.1145/1734263.1734357

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., … Kafai, Y. (2009).
Scratch: Programming for All. Communications of the ACM, 52(11), 60–67.

www.manaraa.com

146

Rist, R. S. (1991). Knowledge Creation and Retrieval in Program Design: A Comparison of Novice and
Intermediate Student Programmers. Human-Computer Interaction, 6, 1–46.
http://doi.org/10.1207/s15327051hci0601_1

Robertson, J., & Nicholson, K. (2007). Adventure Author: a learning environment to support creative
design. In IDC ’07 (pp. 37–44). Aalborg, Denmark.

Sánchez-Ruíz, A. J., & Jamba, L. A. (2008). FunFonts: Introducing 4th and 5th Graders to Programming
Using Squeak. In ACM-SE ’08 (pp. 24–29). Auburn, AL.

Sandoval, W. (2004). Developing Learning Theory by Refining Conjectures Embodied in Educational
Designs. Educational Psychologist, 39(4), 213–223. http://doi.org/10.1207/s15326985ep3904_3

Sandoval, W. (2014). Conjecture Mapping: An Approach to Systematic Educational Design Research.
Journal of the Learning Sciences, 23, 18–36. http://doi.org/10.1080/10508406.2013.778204

Sengupta, P., & Farris, A. V. (2012). Learning Kinematics in Elementary Grades Using Agent-based
Computational Modeling: A Visual Programming-based Approach. In IDC 2012 (pp. 78–87).
Bremen, Germany.

Simon, B., Chen, T.-Y., Lewandowski, G., McCartney, R., & Sanders, K. (2006). Commonsense Computing:
What students know before we teach (Episode 1: sorting). In ICER ’06 (pp. 29–40). Canterbury,
United Kingdom. http://doi.org/10.1145/1151588.1151594

Sivilotti, P. A. G., & Laugel, S. A. (2008). Scratching the Surface of Advanced Topics in Software
Engineering: A Workshop Module for Middle School Students. In SIGCSE ‘08 (pp. 291–295).
Portland, OR, USA.

Solomon, J. (2007). Putting the Science into Computer Science : Treating Introductory Computer Science
as the Study of Algorithms. Inroads - SIGCSE Bulletin, 39(2), 46–49.

Stipek, D. J. (1996). Motivation and instruction. In D. Berliner & R. Calfee (Eds.), Handbook of Educational
Psychology (pp. 85–113). New York, NY: MacMillan. Retrieved from
http://www.unco.edu/cebs/psychology/kevinpugh/motivation_project/resources/stipek96.pdf

Stockard, R., Klassen, M., & Akbari, A. (2004). Computer Science Higher Education Pipeline. In
Consortium for Computing Sciences in Colleges: Eastern Conference (pp. 102–113).

Teague, J. (2002). Women in Computing: What brings them to it, what keeps them in it? Inroads - SIGCSE
Bulletin, 34(2), 147–158.

The Computer Science Teachers Association. (2012). Computer Science K-8: Building a Strong
Foundation.

The International Society for Technology in Education, & The Computer Science Teachers Association.
(2011). Operational Definition of Computational Thinking for K-12 Education.

Todd, K., Mardis, L., & Wyatt, P. (2005). We’ve Come a Long Way, Baby! But Where Women and
Technology are Concerned, Have We Really? In SIGUCCS ’05 (pp. 380–387). Monterey, CA, USA.

www.manaraa.com

147

Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., & Verno, A. (2006). A Model Curriculum for
K-12 Computer Science: Final Report of the ACM K-12 Task Force Curriculum Committee. New York,
NY.

Vygotsky, L. (1978). Interaction between Learning and Development. In M. Cole, V. John-Steiner, S.
Scribner, & E. Souberman (Eds.), Mind in Society The Development of Higher Psychological
Processes (pp. 79–91). Cambridge, MA: Harvard University Press.

Vygotsky, L. (1986). Thought & Language. (A. Kozulin, Ed.)Thought & Language. Cambridge, MA: MIT
Press.

Webb, D. C., Boswinkel, N., & Dekker, T. (2008). Beneath the Tip of the Iceberg: Using Representations
to Support Student Understanding. Mathematics Teaching in the Middle School, 14(2), 110–113.

White, B., Frederiksen, J., Frederiksen, T., Eslinger, E., Loper, S., & Collins, A. (2002). Inquiry Island:
Affordances of a Multi-Agent Environment for Scientific Inquiry and Reflective Learning. In P. Bell &
R. Stevens (Eds.), Proceedings of the Fifth International Conference of the Learning Sciences (ICLS).
(pp. 1–12). Mahwah, NJ: Erlbaum.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
http://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of
the Royal Society, 366, 3717–3725. http://doi.org/10.1098/rsta.2008.0118

Wu, H., Krajcik, J., & Soloway, E. (2000). Using Technology to Support the Development of Conceptual
Understanding of Chemical Representations. In Fourth International Conference of the Learning
Sciences (pp. 121–128). Mahwah, NJ. Retrieved from
http://books.google.com/books?hl=en&lr=&id=0JM5N9PUZM8C&oi=fnd&pg=PA121&dq=Using+Te
chnology+to+Support+the+Development+of+Conceptual+Understanding+of+Chemical+Representa
tions&ots=dDmXc2Hwlh&sig=xoI5mU4yk9Re-0a4Jsgq6V49FoQ

www.manaraa.com

148

Appendix A

Coded Samples of Student Design Summaries
Game: Pet Store

www.manaraa.com

149

Game: Floppy Bird

www.manaraa.com

150

Appendix B

The AgentCubes Online Programming Environment
The AgentCubes Online programming environment (Repenning et al., 2014) is a web-based, 3-

dimensional environment that is based on AgentSheets (described earlier). Like AgentSheets, the

AgentCubes Online programming environment has visual representations of agents, in this case 3-

dimensional shapes that enact programmed behavior within a virtual world, which is also 3-dimensional.

Figure 43 shows what the programming environment looks like without any agents created or

programmed.

Figure 43. AgentCubes Online programming environment

1

2 3 4

5 6

7

www.manaraa.com

151

Each component of the programming environment is elaborated on in the following sections,

which include (1) Agents, (2) Behavior, (3) Conditions, (4) Actions, (5) Worlds, (6) Layers, and (7)

Navigation. The example figures are below.

Agents (Figure 43-1)
Agents are created, deleted, and accessed through area 1 shown in

Figure 43. Agents can be created using the “+Agent,” button at the bottom of

Figure 43-1. Different shapes can also be added to a specific agent through the

“+Shape,” button. Adding a shape is useful when an agent needs to have the

same behavior, but a different visual representation during the gameplay. When

an agent or shape is added, it shows up in a list within area 1.

Behavior (Figure 43-2)
Like AgentSheets, behavior is controlled using methods

and rules. An agent’s behavior can be accessed by clicking on

the agent in the Agents window (Figure 43-1), and then edited

by dragging and dropping conditions and actions into the rules

(Figure 43-2). Rules are evaluated from top to bottom and the

first rule that is true is run while the following rules are skipped.

1

www.manaraa.com

152

Conditions (Figure 43-3)
See earlier AgentSheets description of conditions.

Actions (Figure 43-4)
See earlier AgentSheets description of actions.

2

4

3

www.manaraa.com

153

Worlds (Figure 43-5)
Worlds are the 3-dimensional environment in

which the game is played. Agents can be placed in a

layer in the world using the tools within the navigation

toolbar (Figure 43-7). When the game is played, an

agent’s programmed behavior is the only thing controlling what that agent will do within the world.

Layers (Figure 43-6)
Area 6 of the AgentCubes Online programming environment (Figure 43) provides the

option to add multiple layers to the world. Many layers may be added for a world and the

ability to modify the distance between those layers is also available.

6

5

www.manaraa.com

154

Navigation (Figure 43-7)
The navigation toolbar in area 7 of Figure 43 provides the ability to add and switch between

worlds, save worlds, control the running of the game, place or remove agents, and modify the view of

the world.

i http://sgd.cs.colorado.edu/
ii http://csunplugged.org/
iii http://sgd.cs.colorado.edu/wiki/Category:Computational_Thinking_Patterns
iv http://www.cde.state.co.us/cdereval/rv2011pmlinks.htm
v http://remixlearning.com/

7

